„Ideál (gyűrűelmélet)” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
balideál, jobbideál
1. sor: 1. sor:
Az [[absztrakt algebra]] [[gyűrűelmélet]] nevű ágában '''ideál'''nak nevezzük az <math>R</math> gyűrű <math>I</math> részhalmazát, ha <math>I</math> részgyűrűje <math>R</math>-nek és minden <math>r\in R, s\in I</math>-re <math>rs\in S</math> és <math>sr\in S</math>. Ezt a kapcsolatot <math>R</math> és <math>I</math> között az <math>I \triangleleft R</math> szimbólummal jelöljük.
Az [[absztrakt algebra]] [[gyűrűelmélet]] nevű ágában '''ideál'''nak nevezzük az <math>R</math> gyűrű <math>I</math> részhalmazát, ha <math>I</math> részgyűrűje <math>R</math>-nek és minden <math>r\in R, s\in I</math>-re <math>rs\in I</math> és <math>sr\in I</math>. Ezt a kapcsolatot <math>R</math> és <math>I</math> között az <math>I \triangleleft R</math> szimbólummal jelöljük.


== Példák ==
== Példák ==
12. sor: 12. sor:


Tetszőleges gyűrű ideál saját magában (azaz <math>R \triangleleft R</math> mindig fennáll), és bármely gyűrűben ideál a pusztán a nullelemből álló zérógyűrű. Ezeket gyakran '''triviális ideál'''nak, az ezektől különböző ideálokat pedig '''valódi ideál'''nak nevezzük. Egyszerű gyűrű az olyan gyűrű, amelynek csak triviális ideáljai vannak. Ha egy ideál tartalmaz egy egységet, akkor triviális ideál. Minden [[ferdetest]] egyszerű gyűrű, hiszen ferdetestben minden nemnulla elem egység. Ideálok metszete maga is ideál.
Tetszőleges gyűrű ideál saját magában (azaz <math>R \triangleleft R</math> mindig fennáll), és bármely gyűrűben ideál a pusztán a nullelemből álló zérógyűrű. Ezeket gyakran '''triviális ideál'''nak, az ezektől különböző ideálokat pedig '''valódi ideál'''nak nevezzük. Egyszerű gyűrű az olyan gyűrű, amelynek csak triviális ideáljai vannak. Ha egy ideál tartalmaz egy egységet, akkor triviális ideál. Minden [[ferdetest]] egyszerű gyűrű, hiszen ferdetestben minden nemnulla elem egység. Ideálok metszete maga is ideál.

== Balideál, jobbideál ==

Ha <math>R</math> nem kommutatív, akkor vizsgálhatjuk <math>R</math> azon <math>I</math> részgyűrűit, amelyekre <math>r\in R, s\in I</math> esetén teljesül <math>rs\in I</math> (de <math>sr\in I</math> nem feltétlenül). Az ilyen <math>I</math> részgyűrűket balideálnak nevezzük. Hasonlóan, ha <math>r\in R, s\in I</math> esetén teljesül <math>sr\in I</math>, akkor I-t jobbideálnak nevezzük. Néha a bal- illetve a jobbidáloktól való különbséget hangsúlyozandó az ideálokat kétoldali ideálnak is nevezzük. I akkor és csak akkor kétoldali ideál, ha egyszerre balideál és jobbideál is.

A valós számtest feletti 2×2-es mátrixok gyűrűjében balideált (de nem jobbideált) alkotnak azok a mátrixok, amelyeknek a második oszlopában csupa 0 áll. Ugyanebben a gyűrűben jobbideált (de nem balideált) alkotnak azok a mátrixok, amelyeknek második sorában csupa 0 áll.


== Forrás ==
== Forrás ==

A lap 2010. január 22., 06:57-kori változata

Az absztrakt algebra gyűrűelmélet nevű ágában ideálnak nevezzük az gyűrű részhalmazát, ha részgyűrűje -nek és minden -re és . Ezt a kapcsolatot és között az szimbólummal jelöljük.

Példák

Az egész számok gyűrűjében a héttel osztható számok ideált alkotnak, hiszen egy héttel osztható számot valamilyen egész számmal megszorozva ismét csak héttel osztható számot kapunk.

A valós számtest feletti 6×6-os mátrixok gyűrűjében ideált alkotnak azok a mátrixok, amelyeknek a determinánsa 0, hiszen 0 determinánsú mátrixot tetszőleges mátrixszal szorozva ismét nulla determinánsú mátrixot kapunk.

A intervallumon értelmezett, folytonos egyváltozós valós függvények gyűrűjében ideált alkotnak azok az függvények, amelyekre .

Alaptulajdonságok

Tetszőleges gyűrű ideál saját magában (azaz mindig fennáll), és bármely gyűrűben ideál a pusztán a nullelemből álló zérógyűrű. Ezeket gyakran triviális ideálnak, az ezektől különböző ideálokat pedig valódi ideálnak nevezzük. Egyszerű gyűrű az olyan gyűrű, amelynek csak triviális ideáljai vannak. Ha egy ideál tartalmaz egy egységet, akkor triviális ideál. Minden ferdetest egyszerű gyűrű, hiszen ferdetestben minden nemnulla elem egység. Ideálok metszete maga is ideál.

Balideál, jobbideál

Ha nem kommutatív, akkor vizsgálhatjuk azon részgyűrűit, amelyekre esetén teljesül (de nem feltétlenül). Az ilyen részgyűrűket balideálnak nevezzük. Hasonlóan, ha esetén teljesül , akkor I-t jobbideálnak nevezzük. Néha a bal- illetve a jobbidáloktól való különbséget hangsúlyozandó az ideálokat kétoldali ideálnak is nevezzük. I akkor és csak akkor kétoldali ideál, ha egyszerre balideál és jobbideál is.

A valós számtest feletti 2×2-es mátrixok gyűrűjében balideált (de nem jobbideált) alkotnak azok a mátrixok, amelyeknek a második oszlopában csupa 0 áll. Ugyanebben a gyűrűben jobbideált (de nem balideált) alkotnak azok a mátrixok, amelyeknek második sorában csupa 0 áll.

Forrás