„Konvex és konkáv függvény” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Xqbot (vitalap | szerkesztései)
a Bot: következő hozzáadása: sl:Konveksna funkcija; cosmetic changes
Luckas-bot (vitalap | szerkesztései)
a Bot: következő hozzáadása: nl:Convexe functie
50. sor: 50. sor:
[[ja:凸関数]]
[[ja:凸関数]]
[[ko:볼록함수]]
[[ko:볼록함수]]
[[nl:Convexe functie]]
[[pl:Wypukłość funkcji]]
[[pl:Wypukłość funkcji]]
[[pt:Função convexa]]
[[pt:Função convexa]]

A lap 2009. május 10., 02:26-kori változata

A matematikában, közelebbről a matematikai analízisben egy intervallumon értelmezett, valós értékű függvényt konvexnek nevezünk ha a görbéje feletti végtelen síktartomány konvex alakzat, azaz ha egy szakasz két végpontja benne van a síktartományban, akkor a szakasz összes pontja is. Egy másik szemléletes megfogalmazás, hogy akkor konvex egy függvény, ha érintője mindenütt a függvénygörbe alatt halad.

Az Rn egy konvex részhalmazán értelmezett, valós értékű függvény esetén is szokás konvexitásról beszélni, ennek formális megfogalmazása lentebb található. Lényegében itt is arról van szó, hogy a függvény grafikonja fölötti térrész (R2 R esetben) konvex.

Általános definíció

Az f: R intervallumon értelmezett valós változójú függvény konvex, ha a függvénygörbe két pontját összekötő húr a függvénygörbe fölött halad, azaz tetszőleges a < b pontra az -ből és t ∈ [0,1]-re:

f konkáv, ha a függvénygörbe két pontját összekötő húr a függvénygörbe alatt halad, azaz ha tetszőleges a < b pontra az -ből és t ∈ [0,1]-re:

Szigorúan konvexnek illetve szigorúan konkávnak nevezzük f-et, ha a fenti formulában csak akkor teljesülhet egyenlőség, ha t= 0 vagy 1.

A többváltozós esetben a fenti formulák változatlanul fennmaradnak, csak a és b az értelmezési tartományba eső tetszőleges szakasz két végpontja.

Konvexitás és differenciálhatóság

Ha az f: R intervallumon értelmezett, valós függvény differenciálható, akkor ennek konvex tulajdonsága még a következőképpen is megfogalmazható: minden -beli , számpár esetén

illetve konkáv, ha minden -beli , számpár esetén:

Azaz az érintő egyenes (mely differenciálható függvények esetében értelmezhető csak) konvex esetben mindig a függvénygörbe alatt, konkáv esetben felett halad. Ekkor rendre a függvény és első Taylor-polinomja közötti f – T1,uf ≧ 0 illetve f – T1,uf ≦ 0 egyenlőtlenségről beszélünk (tetszőleges u pontnál).

Amennyiben a függvény kétszer differenciálható, akkor fenáll a következő

TételA konvexitás (konkavitás) jellemzése – Az f: R intervallumon értelmezett kétszer differenciálható függvény pontosan akkor konvex (konkáv), ha a második deriváltja mindenhol nemnegatív (nempozitív).

f konvex
f konkáv
A függvény konkáv a [0;1,9] intervallumban
A függvény konvex a [-1,9;0] intervallumban