„Vektor” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Pontosítás
2. sor: 2. sor:
{{egyért2|a matematikai fogalomról|Vektor (egyértelműsítő lap)}}
{{egyért2|a matematikai fogalomról|Vektor (egyértelműsítő lap)}}


A '''vektor''' a matematikában használatos fogalom, a [[lineáris algebra]] egyik alapvető jelentőségű mennyisége. Általában az ember a vektorokkal mint ''irányított szakaszokkal'' szokott találkozni, de a matematikában a jelentése ennél lényegesen bőségesebb.
A '''vektor''' egy iránnyal és hosszal vagy nagysággal bíró jelenségek leírására használt matematikai fogalom.


==Általános leírás==
==Általános leírás==

A lap 2019. november 1., 22:26-kori változata

A vektor a matematikában használatos fogalom, a lineáris algebra egyik alapvető jelentőségű mennyisége. Általában az ember a vektorokkal mint irányított szakaszokkal szokott találkozni, de a matematikában a jelentése ennél lényegesen bőségesebb.

Általános leírás

A vektor a matematika fontos fogalma. Egy vektort egyértelműen meghatároz az iránya, állása és nagysága (abszolút-értéke). Ennek ellenére a vektort nem definiálhatjuk irányított szakaszként, mert egy vektornak nincsenek pontjai, vagy konkrét helye. Egy vektort végtelen számú irányított szakasz reprezentálhat. Egy irányított szakaszt ponthalmaznak tekintünk, ami kezdő és végponttal rendelkezik és két irányított szakasz különbözik akkor, ha máshol vannak, azaz más pontok alkotják őket.

A vektorok bevezetésére elsősorban fizikai problémák megoldása sarkallta a matematikusokat. Például az elmozdulás, erő, forgatónyomaték, vagy a térerősség (mágneses, elektromos, gravitációs stb.) vektorokkal leírható mennyiségek.

A vektor nagysága a vektort reprezentáló irányított szakasz hossza. Állása a vektort reprezentáló irányított szakasznak egy önkényes választás alapján, előre meghatározott vonatkoztatási egyenessel bezárt szöge. Iránya megmutatja, hogy a vektort reprezentáló irányított szakasznak melyik a kezdő és végpontja.

Vektorok a vektortérnek nevezett halmaz elemei. E halmaz megadásához az elemeken kívül egy másik halmazt is meg kell jelölni, amelynek elemeit skalároknak nevezzük. A vektorokra ugyanis az egymás közötti műveleteken kívül vektor-skalár műveleteket is értelmezünk. Ezért a fenti példákban szereplő vektorok terét szabatosan valós számok feletti vektortérnek kell nevezni. A skalárokat ezekben az esetekben a valós számok képviselik.

Részletezés

A vektorok V halmazában értelmezett egyetlen művelet az összeadás, amelyről megköveteljük, hogy asszociatív és kommutatív legyen, továbbá, hogy legyen a halmazban neutrális elem – nullvektor – és minden elemnek legyen inverze – ellentett vektor. Az ilyen halmazt kommutatív csoportnak nevezik. A skalárok S halmaza ún. kommutatív test, amelynek elemei között a valós számok körében értelmezett műveletek (összeadás és szorzás) értelmezve vannak, s azok ismert tulajdonságaival rendelkeznek: kommutatív, asszociatív mindkettő, disztributív az összeadás a szorzásra nézve, van egység- és null-elem, továbbá additív és multiplikatív inverz (a nulla kivételével). A két halmazt összekapcsolja egy „külső művelet”, a vektornak skalárral való szorzása. E művelet eredménye szintén vektor. Megköveteljük, hogy e műveletre a következő szabályok legyenek érvényesek:

Ha , 1 skalárok és u, v vektorok, akkor

A geometriában

A legismertebb „geometriai” vektor az irányított szakaszok ekvivalencia osztálya. Két (több) azonos hosszúságú és irányítású szakasz ugyanannak az osztálynak (vektornak) a képviselője. Amikor az általuk képviselt osztályokkal műveletet végzünk (például két vektort összeadunk), a szerkesztéshez bármelyiküket használhatjuk: szabad vektorok.

A koordináta rendszerben értelmezett helyvektorok, azaz az origóból indított és a sík egy-egy pontjában végződő irányított szakaszok olyan halmazt alkotnak, ami rendelkezik a vektortér tulajdonságaival, ezek az ún. kötött vektorok.

Egy eltolást megadhatjuk egy vektorral vagy annak bármelyik képviselőjével (egyik irányított szakasszal). Ezért az eltolások halmazának struktúrája az irányított szakaszok osztályainak struktúrájával ekvivalens: vektortér.

E „geometriai” vektorok közös jellemzője a hosszúság és az irány. Az előbbit szokták a vektor abszolút értékének is nevezni. Ezek a fogalmak sok más vektortérben is értelmezhetők. A rendezett szám n-eseknél például a komponensek négyzetösszege a vektor normája, s ennek négyzetgyöke az abszolút értéke. Ugyanebben a vektortérben az irány már nem olyan szemléletes, mint például a síkbeli geometriai vektoroknál.

A vektorral való eltolást -vel jelöljük.

Vektorműveletek

Két vektor összege rajzban a paralelogramma-szabály szerint képezhető

A vektortérben két művelet – az összeadás és a skalárral való szorzás – értelmezett. A vektorok kivonása ezek kombinációjával helyettesíthető: a-b = a+(-1.b). A geometriai vektorok speciális vektorok és speciális geometriai objektumok. Értelmezhető két ilyen vektor szorzata, ami nem általános vektorművelet (például két erő szorzata nem értelmes). A sík vagy térvektorok skaláris szorzata: a.b = skalár, viszont két térvektor vektoriális szorzata: a×b = vektor és ez a művelet síkban nem is értelmezhető. A térben három vektor vegyes szorzata: (a×b).c e két művelet kombinációja, s eredménye skalár. Mind az alapműveleteket, mind e specifikus operációkat értelmezni lehet a sík- ill. a térbeli analitikus geometriában is. Ebben a modellben a geometriai szerkesztéseket számítási eljárások helyettesítik: vektorkalkulus. A geometriai problémák megoldásában a vektoranalízis, a differenciálgeometria szintén sok, elemi úton nehezebben bizonyítható összefüggés, körülményesebben kivitelezhető szerkesztés megoldásában nyújt segítséget.

A fizikában

A fizikában vektornak nevezzük az olyan mennyiségeket, amelyek a koordináta-rendszer elforgatásakor ugyanúgy transzformálódnak, mint a koordinátavektor (ld. a matematikai vektor fogalmát). Ez kiterjesztése a matematikai fogalomnak, mert a fizikában nemcsak számmal, hanem mértékegységgel is jellemezzük a mennyiségeket, ezért mondjuk a hármas helykoordináta-rendszerben szigorúan véve nem tudjuk az impulzust ábrázolni, csak az irányát, a hossza tulajdonképpen önkényes. Az impulzus az impulzustérben ábrázolható. A két koordináta-rendszert el tudjuk viszont szimultán forgatni úgy, hogy a forgatást ugyanazok az Euler-szögek jellemezzék. Ha a koordináta-rendszer elforgatásakor egy másik fizikai mennyiség ilyen értelemben ugyanúgy transzformálódik, akkor az illető mennyiséget fizikai vektormennyiségnek nevezzük.

Ha a koordináta-rendszer tükrözését – ami mindegyik koordinátatengely irányának a megfordítását jelenti – is megengedjük, akkor két eset lehetséges. Ha a vektor iránya ellentétesre vált, akkor a mennyiség valódi vektor vagy egyszerűen vektor, ha nem, akkor pedig axiálvektor

Példák

Lásd még

Források