„A szervezet folyadékterei” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
kategóriába helyezés
a ISBN/PMID/RFC link(ek) sablonba burkolása MediaWiki RfC alapján
4. sor: 4. sor:


== A szervezet víztartalma ==
== A szervezet víztartalma ==
A 19. század második felében élt Claude Bernard francia orvos-fiziológus a mai napig érvényes megállapítása szerint az élő szervezet valójában nem a külső környezetében létezik, hanem egy folyékony belső környezetben, amelyet a keringő folyadék alkot, amely körülveszi valamennyi szöveti elemét. A külső környezetben csak tartózkodik a szervezet, de élni a saját testfolyadékában él.<ref>Fonyó A.: ''Az orvosi élettan tankönyve'', Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 23. oldal. ISBN 978-963-226-504-9</ref>
A 19. század második felében élt Claude Bernard francia orvos-fiziológus a mai napig érvényes megállapítása szerint az élő szervezet valójában nem a külső környezetében létezik, hanem egy folyékony belső környezetben, amelyet a keringő folyadék alkot, amely körülveszi valamennyi szöveti elemét. A külső környezetben csak tartózkodik a szervezet, de élni a saját testfolyadékában él.<ref>Fonyó A.: ''Az orvosi élettan tankönyve'', Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 23. oldal. {{ISBN|978-963-226-504-9}}</ref>


A testfolyadék döntő zömét kitevő víz mind szerkezeti, mind funkcionális szempontból meghatározó jelentőségű az élő szervezetekben. Egyrészt a szervezet oldószere, és így a biokémiai folyamatok reakcióközege. Másrészt reakciópartnernek is tekinthető, mert kiindulási anyagként vagy reakció végtermékként vesz részt biokémiai folyamatokban. Makromolekulákhoz kötve tekinthetjük strukturális elemnek is.<ref> Nelson, D. L., Cox, M. M.: ''Lehninger Principales of biochemistry'' W. H. Freeman and Company, New York, 2008. 5. kiadás. 43–54. oldal, ISBN 978-0-7167-7108-1</ref>
A testfolyadék döntő zömét kitevő víz mind szerkezeti, mind funkcionális szempontból meghatározó jelentőségű az élő szervezetekben. Egyrészt a szervezet oldószere, és így a biokémiai folyamatok reakcióközege. Másrészt reakciópartnernek is tekinthető, mert kiindulási anyagként vagy reakció végtermékként vesz részt biokémiai folyamatokban. Makromolekulákhoz kötve tekinthetjük strukturális elemnek is.<ref> Nelson, D. L., Cox, M. M.: ''Lehninger Principales of biochemistry'' W. H. Freeman and Company, New York, 2008. 5. kiadás. 43–54. oldal, {{ISBN|978-0-7167-7108-1}}</ref>


Az állati szervezet víztartalma a törzsfejlődés és egyedfejlődés során egyre csökken. A medúza víztartalma 98%, a békaféléké 80%. Az emberi szervezet testtömegének 50-72%-a víz, amely az életkor függvényében csökken. Míg a 3 hónapos emberi magzat víztartalma 94%, addig az újszülötté már csak 72%. A felnőtt emberben 50-60% víz található. Az átlagos zsírtartalmú férfi testének víztartalma 60%, szemben a nagyobb átlagos zsírtartalommal rendelkező női szervezettel, melynek víztartalma 50%.<ref>Bálint P.: ''Orvosi élettan'', Medicina, 1972, 47. oldal.</ref>. Az emberi szervek víztartalma figyelemre méltó eléréseket mutat. Míg a zsírszövet szervtömegre vonatkoztatott relatív víztartalma csak 10% körüli érték, addig a zsigeri szervek esetében ez az érték 80% körül mozog.
Az állati szervezet víztartalma a törzsfejlődés és egyedfejlődés során egyre csökken. A medúza víztartalma 98%, a békaféléké 80%. Az emberi szervezet testtömegének 50-72%-a víz, amely az életkor függvényében csökken. Míg a 3 hónapos emberi magzat víztartalma 94%, addig az újszülötté már csak 72%. A felnőtt emberben 50-60% víz található. Az átlagos zsírtartalmú férfi testének víztartalma 60%, szemben a nagyobb átlagos zsírtartalommal rendelkező női szervezettel, melynek víztartalma 50%.<ref>Bálint P.: ''Orvosi élettan'', Medicina, 1972, 47. oldal.</ref>. Az emberi szervek víztartalma figyelemre méltó eléréseket mutat. Míg a zsírszövet szervtömegre vonatkoztatott relatív víztartalma csak 10% körüli érték, addig a zsigeri szervek esetében ez az érték 80% körül mozog.
13. sor: 13. sor:


== Folyadékterek ==
== Folyadékterek ==
A szervezet testfolyadéka egymástól határfelületekkel elválasztott folyadékterekben található, mely tereken belül az oldott anyagok áramlásának kinetikai paraméterei azonosak. Ezzel szemben az egyes folyadékterek között a kinetikai paramétererekben különbségek mutatkoznak. Az egyes folyadéktereket határfelületek választják el egymástól, melyeken át az anyagkicserélődés folyamatos de a penetráció sebessége eltérő. A folyadékterek jelentősége abban van, hogy a bennük lezajló biokémiai és fiziko-kémiai folyamatok térben és időben elkülönülhetnek egymástól, miközben az azonos rekeszen belül ezek a mechanizmusok összerendezetten működnek. A folyadékterek létének és szerepének felismerése a [[18. század]]ig nyúlik vissza. [[Paul Ehrlich]] német orvos-mikrobiológus 1885-ben elvégzett kísérletében megállapította, hogy a kísérleti állatoknak intravénásan beadott vízoldékony tripánkék festék nem jut be az agyba és a gerincvelőbe, miközben minden más szövetbe igen. Néhány évtizeddel később Ehrich tanítványa, Edwin Goldmann 1913-ban igazolta a [[vér-agy gát]] létét és e határfelülettel körülvett transzcelluláris folyadékteret. <ref>Fonyó A.: Az orvosi élettan tankönyve, Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 273. oldal. ISBN 978-963-226-504-9</ref>
A szervezet testfolyadéka egymástól határfelületekkel elválasztott folyadékterekben található, mely tereken belül az oldott anyagok áramlásának kinetikai paraméterei azonosak. Ezzel szemben az egyes folyadékterek között a kinetikai paramétererekben különbségek mutatkoznak. Az egyes folyadéktereket határfelületek választják el egymástól, melyeken át az anyagkicserélődés folyamatos de a penetráció sebessége eltérő. A folyadékterek jelentősége abban van, hogy a bennük lezajló biokémiai és fiziko-kémiai folyamatok térben és időben elkülönülhetnek egymástól, miközben az azonos rekeszen belül ezek a mechanizmusok összerendezetten működnek. A folyadékterek létének és szerepének felismerése a [[18. század]]ig nyúlik vissza. [[Paul Ehrlich]] német orvos-mikrobiológus 1885-ben elvégzett kísérletében megállapította, hogy a kísérleti állatoknak intravénásan beadott vízoldékony tripánkék festék nem jut be az agyba és a gerincvelőbe, miközben minden más szövetbe igen. Néhány évtizeddel később Ehrich tanítványa, Edwin Goldmann 1913-ban igazolta a [[vér-agy gát]] létét és e határfelülettel körülvett transzcelluláris folyadékteret. <ref>Fonyó A.: Az orvosi élettan tankönyve, Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 273. oldal. {{ISBN|978-963-226-504-9}}</ref>
[[Fájl:Body fluids.jpg|450px|jobbra|bélyegkép|A szervezet folyadékterei. Az egyes téglalapok területe a megfelelő terek térfogatával arányos. A számok ml/kg-ban adják meg a megfelelő víz átlagos mennyiségét.<ref>Bálint P.: ''Orvosi élettan'', Medicina, 1972, 48. oldal.</ref>]]
[[Fájl:Body fluids.jpg|450px|jobbra|bélyegkép|A szervezet folyadékterei. Az egyes téglalapok területe a megfelelő terek térfogatával arányos. A számok ml/kg-ban adják meg a megfelelő víz átlagos mennyiségét.<ref>Bálint P.: ''Orvosi élettan'', Medicina, 1972, 48. oldal.</ref>]]


26. sor: 26. sor:


=== Extravazális tér ===
=== Extravazális tér ===
Az extravazális tér a benne oldott anyagok diffúziós sebessége alapján további térkomponensekre bontható, mely terek között tényleges határfelület nem található.<ref>Guyton, A. G., Hall J. E.: ''Texbook of medical physiology'', Elsevier Saunders, 2006, 12. kiadás, 292-296 oldal. ISBN 978-0-7216-0240-0</ref>
Az extravazális tér a benne oldott anyagok diffúziós sebessége alapján további térkomponensekre bontható, mely terek között tényleges határfelület nem található.<ref>Guyton, A. G., Hall J. E.: ''Texbook of medical physiology'', Elsevier Saunders, 2006, 12. kiadás, 292-296 oldal. {{ISBN|978-0-7216-0240-0}}</ref>


'''Sejtközötti folyadék'''
'''Sejtközötti folyadék'''
42. sor: 42. sor:
'''A transzcelluláris folyadék'''
'''A transzcelluláris folyadék'''


Transzcelluláris folyadékoknak nevezzük mindazon testnedveket amelyek a sejteken kívül és extravazálisan helyezkednek el de nem sorolhatók a fenti három kategória egyikébe sem.<ref>Boron, W. F., Boulpaep, E. L., ''Medical physiology.'' Elsevier, 3. kiadás, 2012. 836–838. oldal, ISBN 978-1-4557-4377-3</ref> Ezen tereknek és folyadékoknak a különleges jellegét az adja, hogy az extracelluláris tér egyéb részeitől szorosan illeszkedő sejtek határfelületével vannak elválasztva és a sejtek specifikus aktivitása miatt összetételük jelentősen különbözik az extracelluláris tér többi rekeszében található folyadék összetételétől. Ide soroljuk az [[Ízület|ízületi résekben]] található (''synovialis'') folyadékot, az [[Agy-gerincvelői folyadék|agy-gerincvelői folyadékot]] (''liquor cerebrospinalis''), a savós üregek nedveit, a [[Szem|szemet]] kitöltő csarnokfolyadékot, valamint a mirigyváladékok összességét. Az ember transcelluláris folyadékának teljes mennyisége 15&nbsp;ml/kg-ra becsülhető.
Transzcelluláris folyadékoknak nevezzük mindazon testnedveket amelyek a sejteken kívül és extravazálisan helyezkednek el de nem sorolhatók a fenti három kategória egyikébe sem.<ref>Boron, W. F., Boulpaep, E. L., ''Medical physiology.'' Elsevier, 3. kiadás, 2012. 836–838. oldal, {{ISBN|978-1-4557-4377-3}}</ref> Ezen tereknek és folyadékoknak a különleges jellegét az adja, hogy az extracelluláris tér egyéb részeitől szorosan illeszkedő sejtek határfelületével vannak elválasztva és a sejtek specifikus aktivitása miatt összetételük jelentősen különbözik az extracelluláris tér többi rekeszében található folyadék összetételétől. Ide soroljuk az [[Ízület|ízületi résekben]] található (''synovialis'') folyadékot, az [[Agy-gerincvelői folyadék|agy-gerincvelői folyadékot]] (''liquor cerebrospinalis''), a savós üregek nedveit, a [[Szem|szemet]] kitöltő csarnokfolyadékot, valamint a mirigyváladékok összességét. Az ember transcelluláris folyadékának teljes mennyisége 15&nbsp;ml/kg-ra becsülhető.


== Az egyes folyadékterek meghatározásának lehetőségei ==
== Az egyes folyadékterek meghatározásának lehetőségei ==
Vannak olyan medikális helyzetek, állapotok, esetleg klinikofarmakológiai vizsgálatok, amikor szükségessé válik a szervezet teljes víztartalmának, vagy az egyes folyadékterek térfogatának, funkcionális állapotának meghatározása. Mint fentebb látható, első megközelítésben a szervezetünk két alapvető folyadéktérre osztható: az intracelluláris és az extracelluláris térre. Az extracelluláris tér tovább osztható az érpályán belüli és kívüli egységekre. A folyadékterek térfogata az un. hígítási elv alapján mérhető.<ref>Sherwood L.: ''Human physiology from cells to systems'', Brooks/Cole Thomson Learning, Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States, 4. kiadás, 530-531 oldal. ISBN 0-534-56826-2</ref> Ennek lényege, hogy egy az érpályába juttatott indikátor (pl. [[izotóp]] vagy festék) egyenletes eloszlás után a hígulása mértékével megadja annak a térnek a térfogatát, amelyet az adott indikátor kitöltött. Mindez a következők szerint számolható:
Vannak olyan medikális helyzetek, állapotok, esetleg klinikofarmakológiai vizsgálatok, amikor szükségessé válik a szervezet teljes víztartalmának, vagy az egyes folyadékterek térfogatának, funkcionális állapotának meghatározása. Mint fentebb látható, első megközelítésben a szervezetünk két alapvető folyadéktérre osztható: az intracelluláris és az extracelluláris térre. Az extracelluláris tér tovább osztható az érpályán belüli és kívüli egységekre. A folyadékterek térfogata az un. hígítási elv alapján mérhető.<ref>Sherwood L.: ''Human physiology from cells to systems'', Brooks/Cole Thomson Learning, Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States, 4. kiadás, 530-531 oldal. {{ISBN|0-534-56826-2}}</ref> Ennek lényege, hogy egy az érpályába juttatott indikátor (pl. [[izotóp]] vagy festék) egyenletes eloszlás után a hígulása mértékével megadja annak a térnek a térfogatát, amelyet az adott indikátor kitöltött. Mindez a következők szerint számolható:


::: <math>V=\frac{M}{H}</math>
::: <math>V=\frac{M}{H}</math>

A lap 2018. november 25., 06:14-kori változata

Az emberi és állati szervezetek legnagyobb mennyiségben lévő összetevője a víz, amely nem oszlik meg egyenletesen az egyes szervek és szervrendszerek között. A víz egyrészt sejteken belül, másrészt a sejteken kívül, több, funkcionálisan és anatómiailag jól elkülönülő teret létrehozva együttesen alkotják a szervezet folyadéktereit,[m 1] melyeknek tanulmányozása elsősorban az élettan tudományág tárgykörébe tartozik.[1]

Claude Bernard, francia orvos-fiziológus 1813–1878

A szervezet víztartalma

A 19. század második felében élt Claude Bernard francia orvos-fiziológus a mai napig érvényes megállapítása szerint az élő szervezet valójában nem a külső környezetében létezik, hanem egy folyékony belső környezetben, amelyet a keringő folyadék alkot, amely körülveszi valamennyi szöveti elemét. A külső környezetben csak tartózkodik a szervezet, de élni a saját testfolyadékában él.[2]

A testfolyadék döntő zömét kitevő víz mind szerkezeti, mind funkcionális szempontból meghatározó jelentőségű az élő szervezetekben. Egyrészt a szervezet oldószere, és így a biokémiai folyamatok reakcióközege. Másrészt reakciópartnernek is tekinthető, mert kiindulási anyagként vagy reakció végtermékként vesz részt biokémiai folyamatokban. Makromolekulákhoz kötve tekinthetjük strukturális elemnek is.[3]

Az állati szervezet víztartalma a törzsfejlődés és egyedfejlődés során egyre csökken. A medúza víztartalma 98%, a békaféléké 80%. Az emberi szervezet testtömegének 50-72%-a víz, amely az életkor függvényében csökken. Míg a 3 hónapos emberi magzat víztartalma 94%, addig az újszülötté már csak 72%. A felnőtt emberben 50-60% víz található. Az átlagos zsírtartalmú férfi testének víztartalma 60%, szemben a nagyobb átlagos zsírtartalommal rendelkező női szervezettel, melynek víztartalma 50%.[4]. Az emberi szervek víztartalma figyelemre méltó eléréseket mutat. Míg a zsírszövet szervtömegre vonatkoztatott relatív víztartalma csak 10% körüli érték, addig a zsigeri szervek esetében ez az érték 80% körül mozog.

Paul Ehrlich német orvos-mikrobiológus (1854–1915)

Folyadékterek

A szervezet testfolyadéka egymástól határfelületekkel elválasztott folyadékterekben található, mely tereken belül az oldott anyagok áramlásának kinetikai paraméterei azonosak. Ezzel szemben az egyes folyadékterek között a kinetikai paramétererekben különbségek mutatkoznak. Az egyes folyadéktereket határfelületek választják el egymástól, melyeken át az anyagkicserélődés folyamatos de a penetráció sebessége eltérő. A folyadékterek jelentősége abban van, hogy a bennük lezajló biokémiai és fiziko-kémiai folyamatok térben és időben elkülönülhetnek egymástól, miközben az azonos rekeszen belül ezek a mechanizmusok összerendezetten működnek. A folyadékterek létének és szerepének felismerése a 18. századig nyúlik vissza. Paul Ehrlich német orvos-mikrobiológus 1885-ben elvégzett kísérletében megállapította, hogy a kísérleti állatoknak intravénásan beadott vízoldékony tripánkék festék nem jut be az agyba és a gerincvelőbe, miközben minden más szövetbe igen. Néhány évtizeddel később Ehrich tanítványa, Edwin Goldmann 1913-ban igazolta a vér-agy gát létét és e határfelülettel körülvett transzcelluláris folyadékteret. [5]

A szervezet folyadékterei. Az egyes téglalapok területe a megfelelő terek térfogatával arányos. A számok ml/kg-ban adják meg a megfelelő víz átlagos mennyiségét.[6]

A mai tudásunk szerint a szervezet folyadéktere két nagy (intra- és extracelluláris) térre és azon belül több kisebb, funkcionálisan is elkülönülő folyadékrekeszre tagozódik.

Intracelluláris tér

A sejtmembránnal körülhatárolt teret, a sejtet kitöltő folyadékot intracelluláris térnek, illetve intracelluláris folyadéknak nevezzük, melynek tudományos részletkérdéseivel elsősorban a sejtfiziológia, illetve a sejtbiológia foglalkozik. Az intracelluláris folyadék kémiai összetételében jelentősen különbözik a sejtet körülvevő extracelluláris folyadéktól.

Extracelluláris tér

Intravazális tér

Az érpályán belüli teret részben folyadék (vérplazma), részben az abban található alakos elemek, vérsejtek alkotják. Az alakos elemek és sejtek nélküli folyadékteret intravazális térnek, a folyadékot plazmának nevezzük, melyet az extracelluláris tér egyéb frakcióitól a érkapilláris-membránja választ el. Az ember átlagos plazmatérfogata 45 ml/kg.

Extravazális tér

Az extravazális tér a benne oldott anyagok diffúziós sebessége alapján további térkomponensekre bontható, mely terek között tényleges határfelület nem található.[7]

Sejtközötti folyadék A szervezetet felépítő sejtek közvetlen környezetét képező teret sejtközötti térnek, illetve az azt kitöltő folyadékot sejtközötti folyadéknak nevezzük. Az orvosi szakirodalom intersticiális (interstitialis) térnek vagy folyadéknak is említi. Az egyes anyagok megoszlási tere alapján ehhez számítjuk a nyirok mennyiségét is. A sejtek ezen az intersticiális folyadéktéren keresztül érintkeznek az ereket kitöltő intravazkuláris térrel. A legtöbb szövetünk sejtközötti állománya laza felépítésű. A sejtek közötti laza struktúrájú térben az oldott tápanyagok, illetve anyagcsere végtermékek diffúziója gyors. A sejtközötti folyadék térfogatát 120 ml/kg-re becsüljük, amivel az extracelluláris tér legnagyobb egysége.

"A szervezetet felépítö sejtek, egy folyékony belső környezetben élnek, amelyet a keringő folyadék alkot, amely körülveszi valamennyi szöveti elemét." [m 2].
Ábra: [8]

A fibrózus kötőszövet folyadéktere

A rostos (fibrosus) kötőszövet (inak, fasciák, porcok) sejtközötti állománya, az őket felépítő kollagén-rostok miatt, az anyagok diffúziója lényegesen lassabb, mint a sejtközötti folyadéktérben. Ez a kinetikai különbség teszi szükségessé ennek a folyadéktérnek a külön említését. Ebben a folyadéktérben található vízmennyiség 45 ml/kg-ra becsülhető.

A csontállomány folyadéktere

A csontszövet sejtközötti állománya a kötőszövetnél is sokkal kompaktabb, emiatt a víz és a benne oldott anyagok penetrációja rendkívül lassú. A csontok sejtközötti állományának térfogata mintegy 45 ml/kg.

A transzcelluláris folyadék

Transzcelluláris folyadékoknak nevezzük mindazon testnedveket amelyek a sejteken kívül és extravazálisan helyezkednek el de nem sorolhatók a fenti három kategória egyikébe sem.[9] Ezen tereknek és folyadékoknak a különleges jellegét az adja, hogy az extracelluláris tér egyéb részeitől szorosan illeszkedő sejtek határfelületével vannak elválasztva és a sejtek specifikus aktivitása miatt összetételük jelentősen különbözik az extracelluláris tér többi rekeszében található folyadék összetételétől. Ide soroljuk az ízületi résekben található (synovialis) folyadékot, az agy-gerincvelői folyadékot (liquor cerebrospinalis), a savós üregek nedveit, a szemet kitöltő csarnokfolyadékot, valamint a mirigyváladékok összességét. Az ember transcelluláris folyadékának teljes mennyisége 15 ml/kg-ra becsülhető.

Az egyes folyadékterek meghatározásának lehetőségei

Vannak olyan medikális helyzetek, állapotok, esetleg klinikofarmakológiai vizsgálatok, amikor szükségessé válik a szervezet teljes víztartalmának, vagy az egyes folyadékterek térfogatának, funkcionális állapotának meghatározása. Mint fentebb látható, első megközelítésben a szervezetünk két alapvető folyadéktérre osztható: az intracelluláris és az extracelluláris térre. Az extracelluláris tér tovább osztható az érpályán belüli és kívüli egységekre. A folyadékterek térfogata az un. hígítási elv alapján mérhető.[10] Ennek lényege, hogy egy az érpályába juttatott indikátor (pl. izotóp vagy festék) egyenletes eloszlás után a hígulása mértékével megadja annak a térnek a térfogatát, amelyet az adott indikátor kitöltött. Mindez a következők szerint számolható:

ahol a a megatározandó folyadéktér térfogata, az a beadott indikátor mennyisége, a az indikátor koncentrációja a megoszlás után.

Az alkalmazott indikátor azonban néhány kritériumnak meg kell hogy feleljen:

  • Nem lehet mérgező.
  • A mérés időszaka alatt nem hagyhatja el a szervezetet (vese, tüdő).
  • Nem metabolizálódhat, tehát nem bomolhat le a szervezetben.
  • Nem lehet hatással a folyadékterek térfogatára, vagyis nem lehet diuretikus (vizeletnövelő) vagy ozmotikus hatása.
  • Az egyes folyadékterek méréséhez használt indikátorok elvben nem hatolhatnak át a megoszlási tereket határoló membránon.


Jegyzetek

  1. Az élettan szakirodalma a folyadéktér helyett gyakran a folyadékkompartment kifejezést használja.
  2. Claude Bernard hallála után megjelent könyvéből: Leçons sur les phénomenes de la vie communs aux animaux et aux vegetaux, Paris

Hivatkozások

  1. Bálint P. : Orvosi élettan. Medicina, 1972. 46. oldal.
  2. Fonyó A.: Az orvosi élettan tankönyve, Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 23. oldal. ISBN 978-963-226-504-9
  3. Nelson, D. L., Cox, M. M.: Lehninger Principales of biochemistry W. H. Freeman and Company, New York, 2008. 5. kiadás. 43–54. oldal, ISBN 978-0-7167-7108-1
  4. Bálint P.: Orvosi élettan, Medicina, 1972, 47. oldal.
  5. Fonyó A.: Az orvosi élettan tankönyve, Medicina Könyvkiadó Zrt., Budapest, 7. kiadás, 2014. 273. oldal. ISBN 978-963-226-504-9
  6. Bálint P.: Orvosi élettan, Medicina, 1972, 48. oldal.
  7. Guyton, A. G., Hall J. E.: Texbook of medical physiology, Elsevier Saunders, 2006, 12. kiadás, 292-296 oldal. ISBN 978-0-7216-0240-0
  8. B. Folkow, Eric Neil: Circulation. Oxford University Press, New York-London-Toronto, 1971. könyve alapján
  9. Boron, W. F., Boulpaep, E. L., Medical physiology. Elsevier, 3. kiadás, 2012. 836–838. oldal, ISBN 978-1-4557-4377-3
  10. Sherwood L.: Human physiology from cells to systems, Brooks/Cole Thomson Learning, Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States, 4. kiadás, 530-531 oldal. ISBN 0-534-56826-2