„Téglalap” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
13. sor: 13. sor:
<center><math>K = a+b+a+b = 2a+2b = 2(a+b) </math></center>
<center><math>K = a+b+a+b = 2a+2b = 2(a+b) </math></center>


Két átlója egyenlő hosszúságú, és a felezőpontjuknál metszik egymást. Az átlók hossza a [[Pitagorasz-tétel]]lel számítható ki: <math>\sqrt{a^2 + b^2}</math>.
Két átlója egyenlő hosszúságú, és a felezőpontjuknál metszik egymást. Az átlók hos sza a [[Pitagorasz-tétel]]lel számítható ki: <math>\sqrt{a^2 + b^2}</math>.


Arany téglalapoknak nevezik azokat a téglalapokat, melyekre <math>\frac{a}{b} \, = \, \frac{b}{a - b}</math>.
Arany téglalapoknak nevezik azokat a téglalapokat, melyekre <math>\frac{a}{b} \, = \, \frac{b}{a - b}</math>.

A lap 2014. május 8., 18:17-kori változata

Téglalap
Téglalap

A téglalap (latinul oblongum) egy olyan négyszög, amelynek minden szöge derékszög. Két-két szemközti oldala egyenlő hosszúságú, ezért minden téglalap egyben paralelogramma is.

A négyzet a téglalap egy speciális típusa, amelynek minden oldala egyenlő. A téglalap belső szögeinek összege 360°. Mivel a szemközti szögeinek összege 180°, ezért a téglalap egyúttal húrnégyszög is.

Az oldalakat az ábécé kisbetűivel szokás elnevezni: a, b.

Területe a két oldal szorzata:

Kerülete az oldalak hosszának összege:

Két átlója egyenlő hosszúságú, és a felezőpontjuknál metszik egymást. Az átlók hos sza a Pitagorasz-tétellel számítható ki: .

Arany téglalapoknak nevezik azokat a téglalapokat, melyekre .

Elnevezései

  • Régies magyar elnevezése téglány.
  • Az oblongum elnevezés a görög ετερομηκες („eltérő hosszúságok”) szóból ered, ami Euklidész Elemek című művében szerepel.

Tulajdonságok

  • Szemben fekvő oldalai párhuzamosak és egyenlő hosszúak
  • Középpontosan szimmetrikus

Mértékelmélet

A mértékelmélet elterjedt felépítésében a koordinátatengelyekkel párhuzamos élű téglalapok fontos szerephez jutnak, ugyanis az ő mértéküket (területüket) definiálják először, és csak aztán terjesztik ki a fogalmat más síkidomokra.

Parkettázások

A sík többféleképpen is parkettázható téglalapokkal:






Halszálkaminta

Felosztása

Ha a téglalapot felosztják, rendszerint négyzetekre, háromszögekre vagy kisebb téglalapokra osztják fel. Ezen kívül még foglalkoztak egybevágó polinominókkal is.

A felosztás tökéletes, ha véges sok darab szerepel a felosztásban, és a darabok hasonlók, de nem egybevágók.[1][2] A háromszögelt téglalapban minden darabnak derékszögű háromszögnek kell lennie. Nehéz ilyen felosztást találni. Az elsőt 1925-ben fedezte fel Morón. Az ő felosztásában 1, 4, 7, 8, 9, 10, 14, 15 és 18 oldalhosszú négyzetek szerepelnek.[3]

A téglalap oldalai akkor és csak akkor összemérhetők, ha felosztható véges sok nem egybevágó négyzetre.[4][1] Ez ekvivalens azzal is, hogy a darabok különböző méretű egyenlő szárú háromszögek.

Források

  1. a b R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte (1940). „The dissection of rectangles into squares”. Duke Math. J. 7 (1), 312–340. o. DOI:10.1215/S0012-7094-40-00718-9.  
  2. J.D. Skinner II, C.A.B. Smith and W.T. Tutte (2000. November). „On the Dissection of Rectangles into Right-Angled Isosceles Triangles”. J. Combinatorial Theory Series B 80 (2), 277–319. o. DOI:10.1006/jctb.2000.1987.  
  3. http://mathworld.wolfram.com/PerfectSquareDissection.html
  4. R. Sprague (1940). „Ũber die Zerlegung von Rechtecken in lauter verschiedene Quadrate”. J. fũr die reine und angewandte Mathematik 182, 60–64. o.  

Definíció és tulajdonságok interaktív animációval