„Albert Einstein” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
a Berniek kategória hozzáadva (a HotCattel)
TjBot (vitalap | szerkesztései)
a r2.7.2) (Bot: következő hozzáadása: ba:Эйнштейн, Альберт
379. sor: 379. sor:
[[ay:Albert Einstein]]
[[ay:Albert Einstein]]
[[az:Albert Eynşteyn]]
[[az:Albert Eynşteyn]]
[[ba:Эйнштейн, Альберт]]
[[bat-smg:Alberts Einšteins]]
[[bat-smg:Alberts Einšteins]]
[[bcl:Albert Einstein]]
[[bcl:Albert Einstein]]

A lap 2013. január 21., 12:19-kori változata

Albert Einstein
Albert Einstein 1921-ben
Albert Einstein 1921-ben
Életrajzi adatok
Született1879. március 14.
Ulm, Német Birodalom
Elhunyt1955. április 18. (76 évesen)
Princeton, USA
SírhelyNational Museum of Health and Medicine
Ismeretes mintfizikus
Nemzetiségnémet
Állampolgárságwürttembergi (1879–1896)
állampolgárság nélküli (1896–1901)
svájci (1901–1955)
osztrák (1911–1912)
német (1912–1933)
amerikai (1940–1955)
HázastársMileva Marić (1903–1919)
Elsa Löwenthal (1919–1936)
SzüleiPauline Koch
Hermann Einstein
GyermekekElső házasságból: Hans Albert (1904-1973) és Eduard (1910-1965)
Második házasságból: nincs leszármazott, csak két mostohalánya volt
LakhelyNémetország, Olaszország, Svájc, USA
Iskolái
Iskolái
KözépiskolaLuitpold Gymnasium, ma Albert-Einstein Gymnasium, München, Németország; Aarau Kantoniskola, Svájc (érettségi:1896)
Felsőoktatási
intézmény
Zürichi Műszaki Főiskola (Züricher Polytechnikum), Svájc
Doktorátusi tanácsadóiAlfred Kleiner (egyéb: Heinrich Friedrich Weber)
Pályafutása
Tudományos fokozatDoctor of Philosophy in Physics (1906)
Aktivitási típusElméleti fizikus, egyetemi tanár
Munkahelyei:1900 Fizika és matematika magántanára Winterthurban, Schaffhausenben, majd Bernben
1902 Technikai szakértő (III. osztály): Svájci Szabadalmi Hivatal, (Bern)
Zürichi egyetem
Charles Egyetem, Prága
Züriche Polytechnikum (Zürichi Technikai Főiskola) ma Eidgenössische Technische Hochschule (Államszövetségi Műszaki Főiskola, Zürich)
Königlich-Preußische Akademie der Wissenschaften (Királyi Porosz Tudományos Akadémia)
Kaiser Wilhelm Institut (Vilmos Császár Intézet)
Leideni Egyetem
Institute for Advanced Study Princeton New Jersey USA
Jelentős munkáiÁltalános relativitáselmélet
Speciális relativitáselmélet
Fotoelektromos effektus
Brown-féle mozgás
Anyag-energia ekvivalenciája
Einstein féle téregyenletek
Egyesített térelmélet
Bose-Einstein statisztika
Szakmai kitüntetések
Fizikai Nobel-díj (1921)
Copley-érem (1925)
Max Planck Érem (1929)
A ’’Time’’ folyóirat: A század személyisége

Hatással voltErnst G Strauss, Nathan Rosen, Szilárd Leó, Raziuddin Siddiqui

Albert Einstein aláírása
Albert Einstein aláírása
A Wikimédia Commons tartalmaz Albert Einstein témájú médiaállományokat.
Albert Einstein aláírása
Einstein érettségi bizonyítványa 1896-ból. A 6-os a lehetséges legjobb jegy. Látható, hogy az a tévhit, miszerint Einstein rossz lett volna matematikából, hamis.

Albert Einstein (Ulm, Württemberg, Németország, 1879. március 14.Princeton, New Jersey, USA, 1955. április 18.) elméleti fizikus; tudományos és laikus körökben egyaránt a legnagyobb 20. századi tudósnak tartják. Ő fejlesztette ki a relativitáselméletet és nagymértékben hozzájárult a kvantummechanika, a statisztikus mechanika és a kozmológia fejlődéséhez. 1921-ben fizikai Nobel-díjjal jutalmazták „az elméleti fizika területén szerzett érdemeiért, különös tekintettel a fényelektromos jelenség törvényszerűségeinek felismeréséért”.

A hétköznapi emberek körében Einstein vált a legmagasabb fokú zsenialitás szinonimájává, arcképe egyike a legismertebbeknek a világon. 1999-ben Einsteint a Time folyóirat az „évszázad emberének” nevezte.

Életrajz

Fiatalsága és iskolái

Einstein 1879. március 14-én született a németországi Ulmban, amely jelenleg a Baden-Württemberg tartományhoz tartozik, Stuttgarttól nagyjából 100 km-re keletre fekszik. Apja Hermann Einstein eleinte ágytoll-kereskedéssel foglalkozott, majd nyitott egy elektrokémiai műhelyt. Pauline Koch-al Stuttgart-Bad Cannstadtban házasodtak össze. A család zsidó volt, de Albert szülei nem követték a hagyományokat; a fiú katolikus általános iskolába járt, ahol anyja kívánságára hegedűleckéket vett.

Ötéves korában apja megismertette az iránytűvel. Einstein később ezt a tapasztalatát tartotta a legmeglepőbbnek: ekkor értette meg, hogy valami az „üres” térben is hat a tűre. Bár eszközöket barkácsolt szórakozásból, mégis lassú felfogásúnak tartották, talán dyslexia, félénkség, vagy az átlagtól jelentősen eltérő agyfelépítése miatt (lásd halálánál). Később a relativitáselméletet ennek a lassúságnak a javára írja, mivel többet töprengett a tér és idő problémáján, mint a legtöbb gyerek. Egy másik – sokkal későbbi – feltevés szerint Einstein Asperger-szindrómában, az autizmus enyhébb formájában szenvedett.

Az ifjú Einstein

Einstein matematikát 12 éves kora körül kezdett tanulni. Egy időnként felbukkanó történet szerint megbukott matematikából, de ez nem igaz; csupán a tanulmányi minősítéshez rendelt érdemjegyek változtak meg 1896-ban, ekkortól a legjobb jegy a 6-os lett, amely addig a legrosszabbnak számított, s ez okozta a félreértést évekkel később. Szellemi fejlődésére gyermekkorában és korai kamaszkorában két nagybátyja volt hatással, akik tudományos könyveket ajánlottak neki, valamint egy Max Talmud nevű orvostanhallgató. Talmudot rossz anyagi helyzete miatt a zsidó hitközség úgy támogatta, hogy hat éven át minden csütörtökön Einsteinéknél ebédelhetett. A 10 éves Einsteinnek ő mutatta meg Eukleidész Elemek, és Immanuel Kant A tiszta ész kritikája című művét[1].

1894-ben, apja elektrokémiai műhelyének csődjét követően Einsteinék Münchenből az olasz Paviába (Milánó közelébe) költöztek. Az iskolai év befejezése után Albert csatlakozott a családhoz Paviában.

A következő évben, középiskolai végzettség nélkül, még 16 éves korában felvételi vizsgára jelentkezett a zürichi műszaki egyetemre (Eidgenössische Technische Hochschule), de a vizsgán megbukott. Miután 1896-ban, a svájci Aarauban befejezte a középiskolát, Einsteint minden további nélkül felvették a zürichi főiskolára. Ugyanebben az évben lemondott württembergi állampolgárságáról. (Ebben az időben Württemberg autonóm királyság volt Németországban.)

1898-ban Einstein beleszeretett Mileva Marić szerb osztálytársnőjébe. 1900-ban megkapta tanári diplomáját az Eidgenössische Technische Hochschule-tól, és a svájci kormánytól 1901-ben állampolgárságát is. Ezekben az időkben Einstein olyan baráti körben mozgott, ahol megvitathatta tudományos problémáit; ehhez a körhöz a matematikus Mileva is hozzátartozott. 1902-ben, viszonyuk eredményeképpen gyermekük született, de egy be nem bizonyított hír szerint az újszülött korán meghalt.

Munka és doktorátus

Diplomája kézhezvétele után Einstein nem talált tanári állást. Végül egy volt osztálytársának apja segítette munkához a Svájci Szabadalmi Hivatalban mint szabadalomvizsgálót,[2] 1902-ben. Einstein itt azokat a szabadalmakat bírálta, melyek megértéséhez fizikára volt szükség. Megtanulta, hogyan vegye észre az alkalmazás lényegét a gyakran szegényes leírás ellenére, és igazgatója jóvoltából hozzászokott ahhoz is, hogyan fejezze ki magát a lehető legpontosabban. Alkalomadtán kiigazította a tervezési hibákat, figyelembe véve a munkák praktikus kivitelezését.

Einstein és Mileva 1903. január 6-án házasodtak össze. Einstein feleségére úgy hivatkozott, mint olyan „teremtményre, aki olyan erős és olyan független mint én”. Abram Joffe szovjet fizikus, aki ismerte a házaspárt, Milevát Einstein asszisztenseként fogta fel, de ez valószínűleg pusztán félreértés volt.[3] Ronald W. Clark, Einstein egyik életrajzírója azt állította, hogy Einsteinnek leginkább magányra volt szüksége, hogy tökéletesíthesse munkáját.

1904. május 14-én Bernben megszületett Einsteinék első (törvényes) fia, Hans Albert Einstein, majd Einstein édesapja halála után, 1910-ben, Münchenben a második fiú, Eduard. A skizofréniára hajlamos Eduard elmegyógyintézetben halt meg. Hans, aki hidraulikai mérnök lett a Kaliforniai Egyetemen Berkeley-ben, nem sokat találkozott apjával.

Einstein és Mileva válásukat megelőzően – melyet 1919. február 14-én mondtak ki – öt éven keresztül éltek külön. Einstein ígéretéhez híven átadta Milevának a Nobel-díj összegét, hogy abból nevelje fel a fiúkat. Miután Mileva hazautazott szüleihez, a gyermekeket a szerb ortodox egyház szabályai szerint megkeresztelték, minden valószínűség szerint Einstein tudtával és beleegyezésével. Még ez év június 2-án, Einstein feleségül vette Elsa Löwenthalt, hűséges ápolóját részleges idegösszeomlása és gyomorbántalmai idején. Elsa Albert első unokatestvére volt anyai, és másod-unokatestvére apai ágon. Felesége első házasságából született két lányát együtt nevelték.[4] Házasságukból közös gyermek nem született.

1904-ben Einstein állását véglegesítették a szabadalmi hivatalban. A következő évben megkapta doktori címét „A molekuladimenziók újfajta meghatározásáról” című szakdolgozatára.

1905-ben megírt négy cikket, melyekkel megalapozta a modern fizikát. Nem igazán volt bennük szakirodalom-jegyzék, mely olyan munkatársakra utalt volna, akikkel az ilyen és hasonló témákat a tudósok általában megvitatták egymás között. A legtöbb fizikus egyetért abban, hogy a négy közül három (a Brown-mozgásról, a fényelektromos jelenségről és a speciális relativitáselméletről szóló) olyan, melyért egyenként is megérdemelte volna a Nobel-díjat. A Nobel-díjat a fényelektromos jelenségért kapta, ami nemcsak azért szokatlan, mert Einstein a relativitáselmélettel kapcsolatban sokkal ismertebb, hanem azért is, mert a fotoelektromos jelenség kvantumjelenség, és Einstein nem tudta elfogadni azt a kvantumelméletet, mely szerint a kezdeti állapotból nem jósolható meg a rendszer pontos fejlődése, csak valószínűségeket lehet mondani az egyes események bekövetkezésére.

Ami említésre méltóvá teszi ezeket a cikkeket az az, hogy mindegyik esetben merészen vesz egy ötletet az elméleti fizikából, levonja logikai következményeit, és sikerül olyan kísérleti eredményekre fényt vetnie, melyek évtizedek óta zavarba ejtették a fizikusokat.

Ezeket a cikkeket az Annalen der Physik kiadvány számára küldte el. Gyakran hivatkoznak erre az esztendőre, mint „Annus Mirabilis” (latinul: A csodák éve). Ezek miatt ünneplik a századik évfordulón, 2005-ben a fizika világévét.

Brown-mozgás

Az 1905-ben írt első cikkének címe „Az álló folyadékbeli kis részecskék mozgásáról, melyet a hő molekulamozgásának elmélete megkövetel”. Ebben írta le a Brown-mozgással kapcsolatos tanulmányait. Felhasználva az akkor vitatott kinetikus folyadékelméletet megállapította, hogy ez a jelenség – mely a megfigyelése után évtizedekkel is kielégítő magyarázatra vár –, kísérleti bizonyítékot szolgáltat az atomok létezésére. Ez hitelt adott a statisztikus mechanikának is, melynek jogossága akkoriban vitatott volt.

A cikket megelőzően az atomok hasznos segédfogalomnak tűntek; a fizikusok és kémikusok egyaránt erősen kételkedtek az atomok valóságos létezésében. Az atomi viselkedés Einstein-féle statisztikai tárgyalásmódja utat mutatott a kísérletező tudósoknak, hogyan lehet megfigyelni atomokat közönséges mikroszkópon keresztül.

Wilhelm Ostwald, aki korábban az atomellenes iskola egyik vezetője volt később elmondta Arnold Sommerfeld német fizikusnak, hogy Einstein a Brown-mozgásra kidolgozott magyarázata vezette az atomok létezésének elfogadásához.

Fényelektromos jelenség

A második tanulmányában („Egy, a fény keletkezésével és átalakulásával kapcsolatos heurisztikus nézőpontról”), vetette fel „fénykvantum” ötletét (melyet most fotonnak hívnak), és mutatta meg, hogyan lehet használni ezt az elméletet a fényelektromos jelenség (vagy fotoeffektus) magyarázatára. A fénykvantum ötletét Max Planck német fizikus munkája adta, melyben levezette a feketetest-sugárzás törvényét azzal a feltételezéssel, hogy a fényenergia csak diszkrét mennyiségekben tud elnyelődni és kibocsátódni, úgynevezett „kvantumokban”. Einstein megmutatta, ha feltételezi, hogy a fény valóban csak diszkrét csomagokban terjed, akkor meg tudja magyarázni a fényelektromos jelenség furcsa tulajdonságait.

A fénykvantum ötlete ellentmond James Clerk Maxwell skót fizikus és matematikus által kidolgozott hullámelmélet egyenleteinek, mely szerint a fény elektromágneses sugárzás, és annak a feltevésnek, hogy a fizikai rendszerek energiája végtelen kicsi részekre osztható. Bár a kísérletek kimutatták, még ezután sem fogadták el általánosan, hogy Einstein egyenletei a fényelektromos jelenségre pontosak. 1921-ben, amikor megkapta a Nobel-díjat, az indoklásban a fényelektromos jelenséggel kapcsolatos munkáját név szerint is megemlítették. A legtöbb fizikus a későbbiekben elfogadta, hogy az egyenlet (hf = Ekilépési + Emozgási) helyes, és a fénykvantumok léteznek.

A fénykvantumok elmélete komoly jel volt, hogy létezik egyfajta hullám-részecske kettősség: a fizikai rendszerek hullámszerű és részecskeszerű tulajdonságot is képesek mutatni. Ez az elképzelés szolgált alapvető útmutatóként a kvantummechanika kidolgozói számára. A fényelektromos jelenségről teljes képet csak a kvantummechanika kidolgozása után kaptunk.

Speciális relativitáselmélet

Einstein 1920-ban

Einstein harmadik dolgozata „A mozgó testek elektrodinamikájáról” (eredeti nyelven, németül: "Zur Elektrodynamik bewegter Körper") címet viselte. Ez a munka vezeti be a speciális relativitáselméletet: az idő, a távolság, tömeg és energia olyan elméletét, mely összhangban van az elektromágnesességgel, de még nincs benne a gravitáció. A speciális relativitás szolgált a Michelson-Morley kísérlet óta fennálló rejtély megoldására. A kísérlet kimutatta, hogy a fénysebesség állandó, és nem függ a megfigyelő mozgásától. Ez a newtoni klasszikus mechanika szerint lehetetlen volt.

George Fitzgeraldnak már 1894-ben az volt a feltevése, hogy a Michelson-Morley eredmény megmagyarázható, ha a testek mozgásirányban megrövidülnek. Mégis a dolgozat alapvető egyenleteinek magvát, a Lorentz-transzformációt a holland fizikus, Hendrik Lorentz vezette be 1903-ban, matematikai formát adva Fitzgerald elképzelésének.

Einstein magyarázata két axiómára épült: Galilei régi ötletére, hogy a természet törvényeinek minden egymáshoz képest egyenletesen mozgó megfigyelő számára azonosnak kell lenniük, és arra a szabályra, hogy a vákuumbeli fénysebesség minden, egymáshoz képest inerciarendszerben lévő megfigyelő számára azonos. Az elméletnek számos szokatlan következménye van, mert az idő és tér abszolút voltát elveti. Az elméletet később nevezték el speciális relativitáselméletnek, hogy megkülönböztessék az általános relativitáselmélettől, mely minden megfigyelőt egyenértékűnek tekint, nem csak az egyenletesen mozgókat.

Az elmélet bővelkedik paradoxonokban, és közlésekor úgy tűnt, nem sok értelme van. Ezt felhasználták arra, hogy Einsteint kigúnyolják, de sikerült kidolgoznia a felmerülő ellentmondásokat, és megoldania a problémákat.

Tömeg-energia egyenértékűség

A negyedik dolgozat „Függ-e a test tehetetlensége az energiájától?”, mely 1905 végén került publikálásra, a relativitás axiómájának újabb következményét mutatta meg, a híres egyenletet, mely szerint a test energiája (E) megegyezik a tömegének (m) és a fénysebesség (c) négyzetének szorzatával:

E = mc²

Einstein ennek az egyenlőségnek komoly jelentőséget tulajdonított, mert megmutatta, hogy a tömeggel rendelkező részecskéknek nyugalomban is van energiájuk, ún. „nyugalmi energia”, ez különbözik a mozgási és a helyzeti energiától. Ennek ellenére a legtöbb tudós ezt csak különlegességnek tekintette az 1930-as évekig.

A tömeg-energia ekvivalenciával magyarázható, hogyan képesek a nukleáris fegyverek hatalmas energiát termelni. Ha megmérjük az atommag tömegét és elosztjuk a tömegszámával – melyek közül mindkettő könnyen mérhető –, kiszámolható, mekkora energia van az „atommagba zárva”. Ez lehetővé teszi, hogy kiszámítsuk, mely atommag-átalakulások járnak energiafelszabadulással, és mekkorával. Egyszerű számítással meghatározható a maghasadáskor felszabaduló energia, ha tudjuk az urán atommagjának és a keletkező atommagoknak a tömegét.

Középső évek

1906-ban Einstein másodosztályú technikai vizsgálóvá lépett elő, majd 1911-ben a Prágai Egyetem rendes professzora lett. Ebben az időben együtt dolgozott a matematikus Grossmann Marcell-lal, aki megismertette az általános relativitáselmélethez szükséges Riemann-geometriával. 1912-ben kezdett el Einstein az időre, mint negyedik dimenzióra hivatkozni.

1914-ben, éppen a első világháború kitörése előtt lett Einstein Berlinben a helyi egyetem professzora és a Porosz Tudományos Akadémia tagja. Háborúellenessége és zsidó származása annyira zavarta a német nacionalistákat, hogy a már ekkor világhírű tudós elméleteit megpróbálták hiteltelenné tenni egy ellene szervezett kampányon keresztül.

1914-től 1933-ig a Vilmos Császár Fizikai Intézet igazgatójaként dolgozott. Ez alatt az idő alatt tette legtöbb úttörő felfedezését, és kapta meg a Nobel-díjat is.

1922-ben Einstein és felesége Elsa Japánba ment a Kitano Maru gőzhajóval. Jártak Szingapúrban, Hongkongban és Sanghajban is.

Általános relativitás

Eddingtonnak az 1919 novemberi napfogyatkozásról felvett fényképe

1915 novemberében előadássorozatot tartott a Porosz Tudományos Akadémián (Preußische Akademie der Wissenschaften), amiben leírta az általános relativitáselméletet. Az utolsó előadás tetőpontja az volt, hogy bevezette a newtoni gravitációelméletet felváltó egyenletét. Az elmélet szempontjából minden megfigyelő egyenértékű, nem csak azok, akik állandó sebességgel mozognak. Az általános relativitáselméletben a gravitáció nem erő (ahogy a newtoni elméletben), hanem a téridő görbületének következménye. Ez az elmélet szolgált a kozmológia megalapozására és a világegyetem sok tulajdonságának megértésére, melyet jóval Einstein halála után fedeztek fel. Az elmélet nem kísérletezés és megfigyelés során született, hanem matematikai következtetéssel és elméleti következtetésekkel. Einstein egyenletei jóslatokat tettek lehetővé; amikor ezeket méréssel ellenőrizte Arthur Eddington, pontosnak bizonyultak. Azt mérték, hogy napfogyatkozás alkalmával a Naphoz közeli csillag fényét mennyire hajlítja el a Nap gravitációja: 1919. november 7-én a The Times, neves angol napilap ezt írta első oldalán nagybetűkkel: „Revolution in Science – New Theory of the Universe – Newtonian Ideas Overthrown.” (Forradalom a tudományban – Új Világegyetem-elmélet – Newton elmélete megdöntve) Tudományos körökben az elméletnek ellentmondó jelenséget a mai napig nem találtak.

Ennek ellenére nem mindenki hitt az elméletben. Voltak, akik az Einstein-féle kísérlet-értelmezéssel nem értettek egyet, mások egyszerűen elképzelhetetlennek tartották az életet egy abszolút vonatkoztatási rendszer nélkül. Einstein szerint sokan egyszerűen nem értették meg az azt leíró matematikát.

Az 1920-as években Einstein volt a vezető alakja a Berlini Egyetemen hetente rendezett fizika kollokviumnak. 1921. március 30-án Einstein New Yorkba ment, hogy előadást tartson az új relativitáselméletéről. Ugyanebben az évben Nobel-díjjal jutalmazták a fényelektromos jelenséggel kapcsolatos munkájáért. 1921-ben a relativitáselmélet túlzottan vitatott volt, hogy Nobel-díjat érdemeljen, emiatt döntött úgy a Nobel-bizottság, hogy egy korábbi munkájáért adják oda.

Koppenhágai értelmezés

Einstein kapcsolata a kvantummechanikával elég érdekes volt. Ő volt az első, még Max Planck, a kvantum felfedezője előtt, aki azt mondta, hogy a kvantumelmélet forradalmi elmélet. Az ötlete, hogy a fény kvantumokból áll, említésre méltó változás a fizika klasszikus értelmezéséhez képest. 1909-ben bemutatta első dolgozatát egy fizikuscsoportnak, és kijelentette, hogy meg kell találniuk a módját, hogy a hullámot és a részecskét egyként tudják felfogni.

Az eredeti kvantummechanikát az 1920-as évek közepén felváltó új kvantummechanika Einsteinnek csalódást okozott, mivel azt valószínűségi, és nem szemléltethető alapokra helyezte. Einstein ugyan egyetértett azzal, hogy akkoriban ez volt a legelfogadhatóbb elmélet, de egy még „teljesebb” magyarázatot várt: még determinisztikusabbat.

1926-ban levelet írt Max Bornnak, ebből való Einstein híres megjegyzése: „A kvantummechanika bizonyára hatásos. Mégis egy belső hang azt súgja nekem, hogy ez még nem az igazi. Sok mindent mond az elmélet, de nem igazán visz közelebb az Öreg (Isten) titkához. Én legalábbis meg vagyok győződve, hogy Ő nem dobókockázik.

Niels Bohr, aki gyakran vitatkozott Einsteinnel a kvantummechanikáról, ezt felelte: „Ne mondd meg Istennek, hogy mit kell csinálnia!

Nem önmagában a valószínűségi elméletet utasította el – Einstein valószínűségi elemzéseket végzett a Brown-mozgásról és a fotoeffektusról szóló művében, a „csodálatos 1905-ös év” előtti művében is – mégis úgy gondolta, hogy a fizikai jelenségek alapjában véve determinisztikusak.

Bose–Einstein-eloszlás

1924-ben Einstein egy rövid dolgozatot kapott Satyendra Nath Bose fiatal indiai fizikustól, amiben a fényt fotonokból álló gázként írja le, és megkérte Einsteint, hogy segítsen a publikálásában. Einstein megállapította, hogy hasonló energiaeloszlás lehet érvényes az atomokra is, és egy cikket közölt német nyelven, ebben leírta Bose modelljét, és elmagyarázta a modell következményeit. A Bose–Einstein-eloszlás, mint azóta kiderült, a bozonok (például a fotonok) eloszlását írja le.

Einstein a kvantum-Boltzmann-eloszlás kifejlesztésében segédkezett Erwin Schrödingernek. Ez egy kevert, klasszikus és kvantumos gázmodell. Időközben rájött, hogy ez kevésbé jelentős a Bose-Einstein-modellnél, és elutasította, hogy a neve szerepeljen a dolgozaton.

Késői évek

Einstein és korábbi tanítványa, Szilárd Leó együtt fejlesztettek ki egy hűtőgépet 1926-ban.[5] 1930. november 11-én az 1781541-es számú amerikai szabadalmat kapták meg. A szabadalom szerint „A találmány olyan hűtőgépre vonatkozik, melynél folyékony fémet az elektromos áramtól átjárt cseppfolyós fémre ható mágneses mező mozgat.” (Ma ezen az elven hűtik az atomerőművek tenyésztőreaktorait, mivel nincsenek benne könnyen meghibásodó alkatrészek: forgórészek és dugattyúk.)

1940-ben Albert Einstein megkapja amerikai állampolgárságát. A hivatalos papírokat Phillip Forman bírótól veszi át

1933-ban, amikor Adolf Hitler kancellár lett, kormányzásának egyik első döntése értelmében eltávolították a zsidókat és a politikailag gyanús állami alkalmazottakat (beleértve egyetemi tanárokat is) az állásukból, hacsak előtte nem bizonyították lojalitásukat Németország felé azzal, hogy az első világháborúban szolgáltak.

1932 decemberében Einstein úgy döntött hogy az USA-ba költözik; ezt megelőzően már több éven keresztül telelt a kaliforniai Institute of Technology-n Pasadenában, azonkívül előadó volt az Abraham Flexner újonnan alapított Institute for Advanced Studyján is Princetonban, New Jersey-ben. Az országban állandó tartózkodási engedélyt kapott. Az Einstein család Princetonban vett magának házat (itt halt meg Elsa 1936-ban); a tudós nélkülözhetetlen előadó maradt az Institute for Advanced Studyn, egészen 1955-ös haláláig. Miután 1940-ben amerikai állampolgár lett, megtartotta svájci állampolgárságát is.

Az 1930-as évektől a második világháborúig Einstein eskü alatt tett nyilatkozattal segítette amerikai vízumhoz juttatni a zsidóüldözés elől menekülő európaiakat. Ezenkívül cionista szervezeteknek gyűjtött pénzt, és részben ő alapította az 1933-ban létrejött Nemzetközi Mentő Egyletet.

Eközben Németországban a nemzetiszocialisták gyűlöletüknek hangot adva Einsteint azzal vádolták, hogy „zsidó fizikát” művel, a „német (árja) fizikával” szemben. A nácizmussal rokonszenvező fizikusok (többek között a Nobel-díjas Johannes Stark és Lénárd Fülöp) hiteltelenné próbálták tenni az elméleteit, és politikai feketelistára helyezni azokat a német fizikusokat, akik hittek bennük, így Werner Heisenberget is.

Einstein életének utolsó negyven évét azzal töltötte, hogy a gravitációt és az elektromágnesességet egyesítse, új értelmet adva a kvantummechanikának. Ez máig napirenden van a fizikában (kvantumgravitáció, húrelmélet).

Institute for Advanced Study

Az Institute for Advanced Studyban végzett munkájának középpontjában a fizikai törvények egyesítése állt, melyet Einstein „egyesített térelmélet”-nek nevezett. Megkísérelt egy modellt találni, mely bizonyos körülmények mellett az összes alapvető kölcsönhatást egyetlen kölcsönhatás (erő) különböző megjelenési formáiként adja. A kísérlete balsorsra volt ítélve, hiszen az erős kölcsönhatás és a gyenge kölcsönhatás különbözőségét csak az 1970-es években értették meg, 15 évvel Einstein halála után. Einstein erőegyesítési célja tovább él, egyik említésre méltó kísérlet erre a húrelmélet.

Általános elmélet

Einstein belekezdett az általános gravitációelmélet, és a gravitáció és az elektromágneses erő általános törvényének munkájába: megkísérelte az alapvető kölcsönhatások egyesítését és egyszerűsítését. Elméletét 1950-ben írta le a Scientific American című folyóiratban. Az általános gravitációelmélet kutatásában egyre elszigeteltebb lett (erőfeszítései miatt őrült tudósnak is bélyegezték). Rengeteg kísérlete ellenére próbálkozása, hogy egyesítse az általános relativitáselméletet és a kvantummechanikát, végül is sikertelennek bizonyult.

Utolsó évei

1948-ban Einstein része volt annak a bizottságnak, amely megalapította a Brandeis Universityt.

1952-ben, amikor meghalt Chaim Weizmann izraeli elnök, az izraeli kormány felkérte Einsteint, legyen ő a második elnökük. Ő ezt elutasította: „Mélyen meghatott az izraeli állam felkérése, azonban szomorú vagyok és szégyellem magam, de nem tudom ezt elfogadni.” Ő volt az egyedüli amerikai állampolgár, akinek valaha is pozíciót ajánlottak egy idegen állam vezetésében.

1953-ban még kiadta a módosított egyesített térelméletét. Álmában halt meg egy princetoni kórházban 1955. április 18-án, megoldatlanul hagyva az általános gravitációelméletet. Csak egy ápolónő volt jelen a halálos ágyánál, aki elmondta, hogy a beteg német szavakat mormolt, amelyeket ő nem értett. Még aznap elhamvasztották, mindenféle ceremónia nélkül a New Jersey-beli Trentonban, ahogy ő szerette volna. Hamvait ismeretlen helyen szórták szét.

Agyát dr. Thomas Stoltz Harvey, a halottszemlét végző patológus a család engedélye nélkül eltávolította a holttestből, megvizsgálta, de nem talált semmi érdemlegeset. 1999-ben a McMaster University részletesebb vizsgálata kimutatta, hogy a fali burkolati területe hiányzik, és ennek ellensúlyozására belső fali lebenye 15%-kal szélesebb a szokásosnál. Ez a régió felelős a matematikai gondolkodásért és a térlátásért.[6]

Személyisége

Albert Einstein 1921-ben

Világnézeti látásmódja

Filozófiai nézetek

Filozófiai nézetetit tekintve, ifjúkorában a neopozitivizmus és ezen belül is elsősorban Ernst Mach hatása alá került: 18 éves kora körül (1897 táján) ismerkedett meg az említett szerző két könyvével, a Mechanikával és a Hőtannal, főleg az előbbit tartotta nagyra. Nézeteinek maga adott hangot egy 1913-ban Machhoz írt levelében (ezen kívül pedig számos későbbi művében és megnyilatkozásában), amelyben zseniálisnak nevezte annak elgondolásait és alaptalannak a Mach-Planck-vita során Planck által megfogalmazott kritikákat - a vita arról szólt, hogy az akkori fizika által leírt világkép „valóságos”, az emberi tudattól független-e, ahogy a realista Planck gondolta, tehát hogy létrehozása során a tudat alkalmazkodik a valósághoz; vagy pedig épp fordítva: a tudat csak egy képet hoz-e létre, amely csak célszerű gondolati konstrukció, az érzetek ésszerűsített rendszerezése-e, ahogy a szenzualista talajon álló pozitivista Mach hirdette. Planck szerint Mach azért szerezhetett nézeteinek bizonyos népszerűséget, mert a hitelét vesztett newtoni mechanisztikus világkép ellen harcolt, azonban nézetei emellett a fizikai világkép valóban értékes részeit is lerombolják.

Einstein azonban nem sokáig maradt Mach feltétlen híve, és már korai írásaiban is találhatóak olyan gondolatok, melyek pozitivista alapon nem értelmezhetőek hitelesen. Egyik barátjának, M. A. Bessónak - valószínűleg ő volt, aki megismertette Mach nézeteivel - 1918-ban írt levelében Einstein Newton első törvényét, a fénysebesség állandóságának elvét, és a tehetetlen és súlyos tömeg egyenlőségét kétségtelen tényeknek nevezi.[7], 1919-ben pedig Paul Ehrenfestnek írva a valamennyi inerciarendszer ekvivalenciáját kimondó tételt „empirikusnak” nevezte).

A jelek arra utalnak, hogy lassú eltávolodása a pozitivizmustól már 1907-ben elkezdődött, amikor is nem hajlandó elvetni a relativitáselméletet Walter Kaufmann egy olyan kísérlete miatt, melynek eredményei jobban összhangba hozhatóak voltak Bucherer és Abraham elektronelméletével, mint a sajátjával. Az eredményeket elfogadta, de a relativitáselmélethez mégis ragaszkodott, mondván, hogy az átfogóbb jellegű (márpedig a megfigyeléseket elsődlegesnek tartó pozitivista ilyet nem tehetne).

A pozitivizmustól való eltávolodásnak a témával foglalkozó szerzők számos okát is feltételezik. Számos filozófiai részletkérdésben, így pl. az atomok létezése (amiket Mach puszta absztrakcióknak tartott), vagy a machi „célszerűség”, „gondolati gazdaságosság” kérdésében, mellyel a tudományos elméleteket kritikusai szerint puszta pszichológiai konstrukciókká fokozta le, nem tudtak egyetérteni. Bár Mach módosította (vagy legalábbis jobban kifejtette) ezirányú elképzeléseit, és biztosította Einsteint, hogy nem gondolja lélektani jellegűnek az utóbbi fogalmat, ez sem Planckot, sem Einsteint nem elégítette ki. Einstein bizonyos tekintetben realistább, objektivistább volt Machnál abban a kérdésben, hogy a fizikai elméletek objektíve létező dolgokat (és nem pusztán érzeteket) is leírhatnak, más tekintetben viszont kevésbé, ugyanis a relativitáselméletén dolgozva rájött, hogy egész egyszerűen nem lehet minden benne szereplő matematikai mennyiségnek érzetszerű, szemléletes jelentést tulajdonítani. „Csakhamar láttam” - írta „Hogyan látom a világot?” c. könyvében - „hogy a nemlineáris transzformációk bevonása az elméletbe, amint ezt az ekvivalenciaelv megkövetelte, végzetes a koordináták fizikai interpretálására ... azaz, hogy többé nem követelhetjük meg, hogy a koordinátakülönbségek ideális méterrudakkal, illetve órákkal végzett mérések közvetlen eredményeit jelentsék. Csak 1912 körül találtam meg a dilemmából kivezető utat: nem a koordinátakülönbségeknek van fizikai jelentése, hanem a hozzájuk tartozó Riemann-metrikának.” Fizikai szempontból pl. a fénysebesség állandóságának kérdésében sem tudták álláspontjaikat összeegyeztetni, Mach fenomenalisztikus ismeretelmélete ugyanis az előbbi szükségszerű elvetését jelentette volna. A speciális relativitáselmélet kidolgozásakor még erősen Mach hatása alatt állt, és az elméletet egyszerűen a fizikai elméletek formális egyszerűsítésének fogta fel. Az általános relativitáselmélet és a benne foglalt átfogó gravitáció-kép megalkotásának azonban csak annak a pozitivista elvnek a feladásával sikerült, miszerint egy elméletet csak közvetlenül megfigyelhető elemekből lehet felépíteni. Így szükségszerűleg adta fel pozitivista elképzeléseit, és közeledni kezdett a realizmushoz [8].

Vallásosokhoz való viszonya

Érdekes módon Einsteint istenhívőnek és ateistának is egyformán állítják egyesek, a tőle való kiemelt idézések sorait felhozva példának. Szabadgondolkodónak is, Spinoza Istenében hívő Panteistának is tekintették már. Sok zavart okozhat a megítélésben, hogy Einstein igen gyakran példálózott Istennel, amit sokan az istenhit bizonyítékának vélnek, míg mások szerint Einsteinnek Isten csak példálózni volt jó. Világnézete minden bizonnyal változott az idők során. Talán az egyik ilyen váltópont 12 éves korában történhetett:

Részlet Albert Einstein 1946-ban írott önéletrajzából:

„A hajszából az első kivezető utat a vallás mutatta, melyet a hagyományos nevelő-oktató gépezet minden gyermekbe beleplántált. Így lettem én is – noha vallástalan (zsidó) szülők gyermeke voltam – mélyen vallásos, ez azonban 12 éves koromban hirtelen véget ért. A népszerű tudományos művek olvasása során hamarosan meggyőződtem arról, hogy a bibliai történetek jó része nem lehet igaz. Ennek következményeként szinte fanatikus szabadgondolkodóvá váltam, amihez az az érzés társult, hogy az állam szántszándékkal hazudik az ifjúságnak. Ennek az élménynek az lett a következménye, hogy bizalmatlan lettem minden tekintéllyel szemben, szkeptikussá lettem a mindenkori társadalmi környezetben élő meggyőződésekkel szemben”

Egy másik idézet: „Én egy mélységesen vallásos hitetlen vagyok; ez egy új vallásféle.” Levél Hans Muehsamhoz (1954. március 30.); Einstein Archívum 38–434

„Az a szó, hogy «isten», számomra semmi más, mint az emberi gyengeség kifejezése és terméke; a Biblia tiszteletreméltó, ám primitív és meglehetősen gyermeteg legendák gyűjteménye.”- Einstein sajátkezűleg, német nyelven írt levele 1954-ben Erich Gutkind filozófusnak.[9]

Einstein születésekor köztudottan német állampolgár és zsidó származású ember volt, aki a zsidó vallást nem gyakorolta, ugyanakkor elismerte és tisztelte Jézus tanait (Újszövetség), nagyrabecsülte Assisi Szent Ferenc életfilozófiáját, valamint rendszeresen olvasta a hindu és a buddhista forrásmunkákat is.[10]

Politikai látásmódja

Albert Einstein demokratikus szocialista nézeteket vallott.[11]

Az első világháború kezdetekor intenzíven foglalkoztatta a politika. Belépett a Új Anyaország Szövetségbe (Bund Neues Vaterland), amelynek a célja a jövőbeli háborúk megakadályozása volt.

1918-ban Einstein aláírta a Német Demokratikus Párt (DDP) megalapításához szükséges felhívást. 1932-ben csatlakozott a Sürgős Felhívás nevű szervezethez Heinrich Mannal és Ernst Tollerrel együtt. A szervezet célja az volt, hogy fellépjenek a nácizmus ellen.

Pacifizmus

Einstein már az első világháború alatt is kitűnt háborúellenes magatartásával. 1922-ben tagja lett a Szellemi Együttműködés Bizottságának, amely a jövőbeli háborúk megakadályozására jött létre. Ekkortájt Einstein Sigmund Freuddal sokat levelezett „Miért a háború?” címmel.

Cionizmus

Einstein 1911-ben a prágai Károly Egyetemen magát vallástalannak vallotta. Csak az osztrák-magyar iratokon szerepelt a vallásánál, hogy zsidó.

1918-ban egy dokumentumot írt alá, amelyben vállalta, hogy Németországban Zsidó Kongresszust fognak tartani, amin ő is részt vesz. A kongresszus nem valósult meg, mivel a nácizmus előretört Németországban.

Atombomba

Einstein 1939. augusztus 2-án Szilárd Leó ösztönzésére levelet küldött az Egyesült Államok elnökének (amit lényegében Szilárd fogalmazott) azzal a figyelmeztetéssel, hogy nemcsak Fermi és Szilárd amerikai kutatók, hanem a francia Joliot is az atomenergia gyakorlati demonstrációjának küszöbén áll és az atomenergia gyakorlati célokra való használhatóságának bizonyítása minden valószínűség szerint egy óriási erejű bomba előállításához fog vezetni. Arra intette az elnököt, hogy az amerikai kutatás jelentős anyagi támogatása, valamint lényeges mennyiségű uránérc biztosítása kísérleti célokra az Egyesült Államok számára létfontosságú, mert a németek hasonló kísérleteket folytatnak és a meghódított Csehszlovákiából már az uránérckivitelt betiltották, tehát annak használatát tervbe vették. (A levél szövege itt olvasható magyarul.) Ennek a levélnek volt köszönhető mind az anyagi alap, mind az uránérc biztosítása a chicagói egyetem atommáglyájának létrehozásához és a Manhattan project (Manhattan terv) megteremtéséhez, ami biztosította az atombomba elsőségét az Egyesült Államok számára.

Az atombomba tervezése, kivitelezése és kipróbálása idején mind Einstein, mind pedig a magyar majd német egyetemeken képzett, de Amerikába menekült fizikusok létfontosságúnak látták az atombomba kifejlesztését, később azonban, annak hatásáról értesülve a bomba betiltásának, illetve nemzetközi felügyeletének szóvivőivé váltak.

A tudós 1947-ben részt vett a Német probléma országos konferenciáján olyan prominens személyekkel, mint Eleanor Roosevelt és Henry Morgenthau Jr. A konferencián arra a döntésre jutottak, hogy „minden terv Németország gazdasági és politikai hatalmának feltámasztására komoly veszélyt jelentett a világra nézve”.[12]

Einstein kései éveiben

Az ulmi Einsteinstraße

1920-ban Ulm város főpolgármestere előbb óvatosan a tübingeni egyetemnél érdeklődött, hogy vajon Einstein tudományos munkássága valóban olyan jelentőségű-e, mint amilyet az újságok neki tulajdonítanak. Csak miután az egyetem válasza Einsteint a második Newtonnak titulálta, vette fel Ulm a kapcsolatot híres szülöttével, és később, 1922-ben, amikor Einstein megkapta a fizikai Nobel-díjat, utcát is elnevezett róla.

Amikor a főpolgármester 1929-ben az 50. születésnaphoz gratuláló levelében az utcanévről is beszámolt neki, Einstein így válaszolt: „A rólam elnevezett utcáról hallottam már. Vigasztalt a gondolat, hogy én nem vagyok felelőssé tehető azért, ami az utcában történik.”[13]

Alig négy évvel később azonban, 1933-ban az Einsteinstraße új nevet kapott a nem-zsidó német filozófus Fichte után.

Az utcát 1945-ben újra visszakeresztelték Einsteinstraße névre.

Amikor egy évvel később fehívták a névváltoztatásokra Einstein figyelmét, ezt mondta: „Az utcanevek fura történetéről annak idején tudomást szereztem, és nem kevéssé mulattam rajta. Azt már nem tudom, hogy változott-e a helyzet azóta, és még kevésbé, hogy mikor kerül sor a következő átnevezésre, de a kíváncsiságomat fékezni tudom. (...) Szerintem egy semleges név, mondjuk a »Szélkakas utca« a németek politikai lényéhez jobban illene, és feleslegessé tenné a későbbi átkeresztelgetést.”[14]

Einstein emlékezete

Híres mondásai

  • Newton pontos terve szerint suhan a csillag, és arra int néma pályán róva terét, ki-ki tisztelje mesterét.
  • Isten nem kockázik![18]
  • Isten titokzatos ugyan, de semmiképpen nem rosszindulatú!
  • Ne sikeres ember próbálj lenni, hanem értékes.
  • A legfontosabb: nem szabad abbahagyni a kérdezést.
  • Ne úgy gondolj tanulmányaidra mint kötelességre, hanem mint irigylésre méltó lehetőségre. Megismerni a szellem felszabadító erejét, a saját kedvedre és a közösség hasznára, melyhez későbbi munkád is tartozik.
  • Ha a tények nem igazolják az elméletet, változtasd meg - a tényeket.
  • Azt nem tudom, hogy a harmadik világháborút milyen fegyverekkel fogják megvívni, de a negyediket biztosan botokkal és kövekkel.
  • Csak két dolog végtelen: a Világegyetem és az emberi butaság. De a világegyetemben nem vagyok olyan biztos.
  • A kérdés, ami néha elbizonytalanít: én vagyok őrült, vagy mindenki más?
  • Az, aki még sosem követett el hibát, valószínűleg még sosem próbált semmi új dolgot.
  • Az okos emberek megoldják a problémákat, a zsenik pedig megelőzik őket.
  • A világban az a legérthetetlenebb, hogy megérthető.
  • Az időnek egyetlen oka van: minden nem történhet egyszerre.
  • A legnehezebben megérthető dolog a világon a jövedelemadó.
  • A tudomány, a hétköznapi gondolkodás kifinomultabb formája .
  • Ne beszéljünk addig nagy felfedezésekről vagy haladásról, amíg a világon egyetlen boldogtalan kisgyerek is létezik.

Különcsége

Többek, pl. Teller Ede, elmondása szerint sosem viselt zoknit.[19]

Magyar vonatkozások

Einstein a művészetben

  • Podmaniczky Szilárd Albert Einstein Paprikáskrumpli című darabja 2010 februárjától látható az RS9 színházban.

„Einstein-szorzó”

Einstein-szorzó: Főként fizikusok és matematikusok között elterjedt vicces-tréfás értékmérce. Aki közvetlenül találkozott és kezet fogott Einsteinnel, annak 1-es az Einstein-szorzója. A hármas szorzó azt jelenti, hogy kezet fogott azzal, aki kezet fogott azzal, aki kezett fogott Einsteinnel. Tehát az értékszám a kézfogási kapcsolódási pontok számát jelzi.

Irodalom

Magyarul

Más nyelven

  • Zur Elektrodynamik Bewegter Körper von Albert Einstein Annalen der Physik. 1905. június 29. (Eredeti nyomdahű változat PDF-ben).
  • Legtöbb műve angolul (egy csomó angol link) elérhető az Wikipedia angol változatából.
  • Ronald W. Clark: Albert Einstein – Leben und Werk, 100 Jahre Relativitätstheorie (2005), ISBN 3-85492-604-9.
  • Klaus P. Sommer: Wer entdeckte die Allgemeine Relativitätstheorie? Prioritätsstreit zwischen * Hilbert und Einstein. Physik in unserer Zeit 36(5), S. 230–235 (2005), ISSN 0031-9252
  • Alexander Moszkowski: Einstein (1920) – Einblicke in seine Gedankenwelt, entwickelt aus Gesprächen mit Einstein
  • Alexis Schwarzenbach: Das verschmähte Genie. Albert Einstein und die Schweiz (2005), ISBN 3-421-05853-9; Historische Abhandlung der Schweizer Jahre und Beziehung von Einstein zur Schweiz

Fontosabb publikációi

Albert Einstein: Zur Elektrodynamik bewegter Körper, Annalen der Physik, 322, 10, 891-921. (1905)

Albert Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, 17, 6, 132–148. (1905)

Albert Einstein: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, 323, 13, 639-641. (1905)

Albert Einstein: Zur Theorie der Brownschen Bewegung, Annalen der Physik, 324, 2, 371-381. (1906)

Albert Einstein: Die Feldgleichungen der Gravitation, Königlich Preussische Akademie der Wissenschaften: 844–847. (1915)

Einstein, Albert; Podolsky, Boris; Rosen, Nathan: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical Review, 47, 10, 777–780. (1935)

Források

  1. Dudley Herschbach, "Einstein as a Student", Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA, page 3, web: HarvardChem-Einstein-PDF: Max Talmud visited on Thursdays for six years.
  2. A Svájci Szabadalmi Hivatal honlapja; Elérés: 2007. január 22.
  3. Arguing about Einstein's wife; A physicsworld.com cikke; 2004. április 10. Elérés: 2008. január 22.
  4. Short life history: Elsa Einstein. (Hozzáférés: 2007. június 11.)
  5. Einstein's Refrigerator; Elérés: 2007. január 22.
  6. The Long, Strange Journey of Einstein's Brain, National Public Radio, <http://www.npr.org/templates/story/story.php?storyId=4602913>. Hozzáférés ideje: 3 October 2007
  7. Einstein ekkoriban még nem tudott Eötvös kísérleteiről, amelyek igazolták ezt a feltételezést.
  8. Illy József: Einstein eltávolodása a pozitivizmustól. Magyar Filozófiai Szemle, XIX./1.-2. (1975); 151.-160. o.
  9. Einstein letter dismissing 'childish' religion sells for 200,000 pounds Haaretz.com
  10. http://www.pte.hu/hirek/207 Einstein és a buddhizmus
  11. Why Socialism? By Albert Einstein
  12. Steven Casey, "The campaign to sell a harsh peace for Germany to the American public, 1944–1948". History, 90 (297). pp. 62–92. (2005) ISSN 1468-229X
  13. Albert Einstein (1879-1955). Stadt Ulm Stadtgeschichte. (Hozzáférés: 2010. május 31.)
  14. Grundmann, Siegfried. Einsteins Akte. Einsteins Jahre in Deutschland aus der Siecht der deutschen Politik. Berlin und Heidelberg (1998) „Ich glaube, ein neutraler Name, z. B. „Windfahnenstrasse” wäre dem politischen Wesen der Deutschen besser angepasst und benötigte kein Umtaufen im Laufe der Zeiten. 
  15. Az évszázad embere A THE TIME cikke; Elérés: 2007. január 22.
  16. the Albert Einstein College of Medicine of Yeshiva University. (Hozzáférés: 2024. november 21.)
  17. Albert Einstein Medical Center. (Hozzáférés: 2024. november 21.)
  18. A kijelentést többször, különböző szövegkörnyezetekben is megfogalmazta, más-és más formában.
    • „Die Quantenmechanik ist sehr Achtung gebietend. Aber eine innere Stimme sagt mir, dass das noch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem Geheimnis des Alten bringt sie uns kaum näher. Jedenfalls bin ich überzeugt, dass der Alte nicht würfelt.” - Max Born-nak írt levél, 4. Dezember 1926, Einstein-Archiv 8-180.
    egy másik változat:
    • „Es scheint hart, dem Herrgott in die Karten zu gucken. Aber dass er würfelt und sich telepatischer Mittel bedient (wie es ihm von der gegenwärtigen Quantentheorie zugemutet wird), kann ich keinen Augenblick glauben.” - Lánczos Kornélnak írt levél, 21. März 1942, Einstein-Archiv 15-294.
  19. http://www.lico-art.hu/media/archivum.php?cikk=64 Faludy, hozzá hasonlóan, sosem viselt zoknit
  20. Nemzetközi Lánczos centenárium; A Fizikai Szemle cikke; 1995, 1. szám; Elérés: 2008. január 28.
  21. Marcel Grossman Az ICRA cikke; elérés: 2008. január 22.
  22. Kemény János; A machines.hu cikke; Elérés: 2008. január 22.
  23. Beszélgetés Balázs Nándor professzorral; A sulinet.hu cikke; Elérés: 2007. január 22.

További információk

A magyar Wikiforrásban további forrásszövegek találhatóak
Albert Einstein témában.
Commons:Category:Albert Einstein
A Wikimédia Commons tartalmaz Albert Einstein témájú médiaállományokat.
Fájl:Wikiquote-logo.svg
A magyar Wikidézetben további idézetek találhatóak Albert Einstein témában.