„Párhuzamosság” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
→‎Tulajdonságai: Rokon fogalmak
38. sor: 38. sor:
===Tulajdonságai===
===Tulajdonságai===
Az így általánosított párhuzamosság a vektortér rögzített dimenziójú alterein ekvivalenciareláció. Ezek az osztályok a párhuzamos nyalábok, vagy párhuzamos altérsorok. Ha a rögzített dimenzió 1, akkor párhuzamos egyenesnyalábról, ha 2, akkor párhuzamos síksorról, ha ''n''-1, akkor párhuzamos hipersíksorról van szó. Az affin geometria nyelvén azok a ''k'' dimenziós affin alterek párhuzamosak, amelyek a végtelen távoli hipersíkon ''k''-1 dimenziós altérben metszik egymást. Az összes affin altér halmazán a párhuzamosság szimmetrikus és reflexív, de nem tranzitív reláció.
Az így általánosított párhuzamosság a vektortér rögzített dimenziójú alterein ekvivalenciareláció. Ezek az osztályok a párhuzamos nyalábok, vagy párhuzamos altérsorok. Ha a rögzített dimenzió 1, akkor párhuzamos egyenesnyalábról, ha 2, akkor párhuzamos síksorról, ha ''n''-1, akkor párhuzamos hipersíksorról van szó. Az affin geometria nyelvén azok a ''k'' dimenziós affin alterek párhuzamosak, amelyek a végtelen távoli hipersíkon ''k''-1 dimenziós altérben metszik egymást. Az összes affin altér halmazán a párhuzamosság szimmetrikus és reflexív, de nem tranzitív reláció.
==Rokon fogalmak==
A párhuzamos eltolás minden pontot egy adott távolsággal tol el egy adott irányban. Vektoriálisan, <math> x \mapsto x+a </math>. Így futhatnak párhuzamosan félegyenesek és szakaszok is. Hasonlóan eltolhatók görbék is a normálisuk irányában. A <math> \gamma(s) \in \mathbb{R}^2 </math> görbének párhuzamos görbéi a <math> \gamma(s) \pm a n(s) </math> görbék, ahol <math> n(s) </math> normálvektora <math> \gamma(s) </math>-nek. Erre példák a párhuzamos körök.


==Kapcsolódó szócikkek==
==Kapcsolódó szócikkek==

A lap 2012. június 29., 20:29-kori változata

Az euklideszi geometriában két egyenes párhuzamos, ha egysíkúak, és nem metszik egymást. Emellett az egyeneseket párhuzamosnak tekintik önmagukkal, hogy a párhuzamosság ekvivalenciareláció legyen. A hiperbolikus geometriában irányított egyenesek párhuzamosságáról beszélnek. Azok az irányított egyenesek párhuzamosak, amelyek elválasztják a metsző és a nem metsző irányított egyeneseket. A szóhasználat nem egységes. Ezeket az egyeneseket hívják elpattanónak, vagy az összes nem metszőt párhuzamosnak.

Gyakran mondják, hogy „a párhuzamosok a végtelenben metszik egymást”. Ez affin szemléletre utal, azaz arra, hogy minden egyenest egy-egy végtelen távoli ponttal bővítettük, és hogy az egy párhuzamos nyalábba tartozó egyenesek végtelen távoli pontja közös. Ha nem teszünk különbséget végtelen távoli és közönséges pontok között, akkor a projektív geometriához jutunk, ahol már nincsenek párhuzamosok.

A három dimenziós euklideszi térben teljesülnek a következők:

  • Két egyenes kitérő, ha nincsenek egy síkban.
  • Egyenes és sík párhuzamos, ha nem metszik egymást, vagy a sík tartalmazza az egyenest.
  • Két sík párhuzamos, ha nem metszik egymást, vagy egybeesnek.

Magasabb dimenziós terekben más alterek párhuzamossága is értelmezve van. A hiperbolikus, az affin és a projektív geometriában is hasonlók teljesülnek.

Vektorterekben két egyenes párhuzamos, ha irányvektoraik lineárisan összefüggnek.

Tulajdonságai

Az euklideszi és az affin síkgeometriában teljesül:

Adott egyeneshez adott ponton át egy, az adott egyenest (közönséges pontban) nem metsző egyenes húzható.

Ez a kijelentés az euklideszi geometria párhuzamossági axiómája, ami szükséges az euklideszi geometria felépítéséhez. Elhagyásával az abszolút geometriát kapjuk, ami az euklideszi és a hiperbolikus geometria közös általánosítása. A hiperbolikus geometriában a hiperbolikus axióma helyettesíti:

Adott egyeneshez adott ponton át több, az adott egyenest nem metsző egyenes húzható.

Az analitikus geometriában az euklideszi párhuzamossági axióma bizonyítható. Tehát ez a geometria az euklideszi geometriát modellezi.

Tetszőleges dimenziós euklideszi, affin és hiperbolikus terekben az egyenesek párhuzamossága ekvivalenciareláció. Ennek osztályai a párhuzamos nyalábok, amelyek speciális sugársorok.

Tetszőleges dimenziójú euklideszi geometriában bármely párhuzamos egyenespár távolsága állandó, azaz akárhol metsszük el őket egy rájuk merőleges egyenessel, a párhuzamos egyenespár mindig ugyanolyan hosszú szakaszt metsz ki belőle. A hiperbolikus geometriákban ez csak akkor igaz, ha a két egyenes egybeesik.

Általánosítása vektorterekben

Az -dimenziós test fölötti vektortér alterei, az lineáris alterek mellékosztályaiként írhatók le az -hoz tartozó koordináta-vektortérben. Ekkor és valami -re.

  • Az és terek párhuzamosak, ha vagy .

Ugyanez átfogalmazható csak geometriai fogalmakkal:

  • Az és a terek párhuzamosak, ha az affin térben van egy párhuzamos eltolás, hogy vagy .
Vektoriálisan, eltolásvektora (lehet például az előző megfogalmazás szerint) és akkor az állítás:
  • Az és az terek párhuzamosak, ha van egy eltolás, hogy vagy .

Ezeket a definíciókat rendszerint legalább egy dimenziós alterekre alkalmazzák, hiszen eszerint a pontok és az üres halmaz mindennel párhuzamos lenne.

Tulajdonságai

Az így általánosított párhuzamosság a vektortér rögzített dimenziójú alterein ekvivalenciareláció. Ezek az osztályok a párhuzamos nyalábok, vagy párhuzamos altérsorok. Ha a rögzített dimenzió 1, akkor párhuzamos egyenesnyalábról, ha 2, akkor párhuzamos síksorról, ha n-1, akkor párhuzamos hipersíksorról van szó. Az affin geometria nyelvén azok a k dimenziós affin alterek párhuzamosak, amelyek a végtelen távoli hipersíkon k-1 dimenziós altérben metszik egymást. Az összes affin altér halmazán a párhuzamosság szimmetrikus és reflexív, de nem tranzitív reláció.

Rokon fogalmak

A párhuzamos eltolás minden pontot egy adott távolsággal tol el egy adott irányban. Vektoriálisan, . Így futhatnak párhuzamosan félegyenesek és szakaszok is. Hasonlóan eltolhatók görbék is a normálisuk irányában. A görbének párhuzamos görbéi a görbék, ahol normálvektora -nek. Erre példák a párhuzamos körök.

Kapcsolódó szócikkek