„Riemann-integrál” változatai közötti eltérés

A Wikipédiából, a szabad enciklopédiából
[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
88. sor: 88. sor:
Az integrálási szabályok levezethetőek a deriválási szabályokból. Példák (f,g függvények, c valós konstans) :
Az integrálási szabályok levezethetőek a deriválási szabályokból. Példák (f,g függvények, c valós konstans) :


<math>\int (f \pm g) \, = \int f \pm \int g</math>
<math>\int (f \pm g) = \int f \pm \int g</math>


<math>\int c \cdot f = c \cdot \int f</math>
<math>\int c \cdot f = c \cdot \int f</math>
94. sor: 94. sor:
<math>\int f ( ax + b ) = \frac {F ( ax + b ) }{a} + C</math>, ahol <math>a</math> és <math>b</math> valós szám és <math>F' = f</math>.
<math>\int f ( ax + b ) = \frac {F ( ax + b ) }{a} + C</math>, ahol <math>a</math> és <math>b</math> valós szám és <math>F' = f</math>.


<math>\int f \cdot g' = f \cdot g - \int f' \cdot g \, \mathrm{d}x </math>
<math>\int f \cdot g' = f \cdot g - \int f' \cdot g </math>


<math>\int (f \circ g) \cdot g' = F \circ g + C</math>, ahol <math>F' = f</math>.
<math>\int (f \circ g) \cdot g' = F \circ g + C</math>, ahol <math>F' = f</math>.

A lap 2013. május 3., 19:10-kori változata

Az integrál mint a függvénygörbe alatti terület

A matematikai analízisben az érintőprobléma mellett a másik jelentős témakör a kvadratúra problémája, vagyis a függvénygörbe alatti terület meghatározása, azaz az integrálás (régen: egészlés).

Szemléletesen az integrálás feladata azt meghatározni, hogy adott [a,b] zárt intervallumon értelmezett, pozitív értékeket felvevő függvény esetén mekkora területű síktartományt határol a függvény görbéje, az x tengely, valamint az x = a és az x = b egyenes. Valójában ez a másik irányban igaz: Az integrálás segítségével definiálható az említett görbével határolt terület nagysága.

Folytonos függvények integráljára először Cauchy adott minden esetben ellenőrizhető eredményt szolgáltató definíciót. Riemann kérdése az volt, hogy milyen – nem feltétlenül folytonos – függvények esetén értelmes még integrálról beszélni. Ő alkotott először általános definíciót az integrálható függvények osztályának értelmezésére. Azokat a függvényeket, amelyek ennek a definíciónak megfelelnek, Riemann-integrálhatónak nevezzük.

Riemann definíciója

Az integrál jellemzői az integrálandó f(x) függvény és az [a,b] intervallum, amin integrálunk. Az a-t az integrál alsó határának, a b-t az integrál felső határának nevezzük.

Integrálható (azon belül folytonos) függvény.

Osszuk fel az intervallumot n részre valamilyen halmazzal, ahol . Ezt az Fn halmazt az [a,b] intervallum egy felosztásának nevezzük. A felosztás finomságának nevezzük a felosztás leghosszabb részintervallumának a hosszát. Ennek a jele legyen:

Az integrálási intervallum egy három részintervallumból álló felosztása

Mindegyik [xi-1, xi] részintervallumból (1 ≤ in) válasszunk ki tetszőlegesen egy ξi elemet.

Állítsunk f(ξi) magasságú téglalapokat a részintervallumokra, majd összegezzük ezek területét, így megkapjuk az adott felosztással adódó területet, amit közelítő összegnek nevezünk:

Ezt a jelöléssel a következőképp is felírhatjuk:

A felosztásokból az intervallumok számának növelésével készíthetünk végtelen sorozatokat: . Ezeket nevezzük felosztássorozatoknak. Ha egy olyan felosztássorozatot veszünk, melyre a sorozat a nullához tart, akkor a felosztássorozatot normális felosztássorozatnak vagy minden határon túl finomodó felosztássorozatnak nevezzük.

Normális felosztássorozat első tagjai

Ha a közelítő összegek sorozata minden normális felosztássorozat esetén konvergens, akkor azt mondjuk, hogy a függvény Riemann-integrálható az [a,b] intervallumon, és a határértékét a függvény Riemann-integráljának nevezzük. Jele: vagy röviden: .

Összefoglalva:

ahol

Bebizonyítható, hogy minden szakaszosan folytonos függvény Riemann-integrálható.

Az alsó és a felső integrálközelítő összeg

Ha a összegben az helyett mindenhol a függvénynek az adott részintervallumbeli felső határát írjuk, akkor a (Darboux-féle) felső integrálközelítő összeghez jutunk: , ahol a függvény felső határa (supremuma) az intervallumon.

Hasonló a (Darboux-féle) alsó integrálközelítő összeg definíciója is: ahol az függvény alsó határa (infimuma) az intervallumon.

Amennyiben létezik az integrál, akkor . Ily módon az integrált „két érték közé tudjuk szorítani”.

A primitív függvény fogalma és a Newton-Leibniz-formula

Az (véges vagy végtelen) intervallumon értelmezett f függvény primitív függvényének nevezzük az F függvényt, ha F'(x)=f (x) teljesül bármely esetén. (Azaz ha F deriváltja az eredeti f függvény.)

Ha egy F(x) függvény primitív függvény, akkor F(x)+C is az, ahol C tetszőleges valós szám, hiszen konstans hozzáadása a deriváltat nem változtatja meg. Az is bebizonyítható, hogy az összes primitív függvény felírható F(x)+C alakban. Összefoglalva tehát egy függvénynek végtelen sok primitív függvénye van, de ezeket konstans hozzáadásával megkapjuk egymásból.

Ez grafikusan is könnyen belátható. A derivált a függvény „változási gyorsaságát” jelenti, azaz a grafikonjának a meredekségét. Ha hozzáadunk egy konstanst, akkor a függvény képe függőlegesen eltolódik. Nyilván ezzel minden pontban ugyanaz marad a meredeksége. A három grafikonon ábrázolt függvény deriváltfüggvénye tehát ugyanaz lesz.

Az f(x) legyen a sin x függvény. Ennek egyik primitív függvénye a -cos x függvény, hiszen (-cos x)' = sin x, de a -cos x +5 függvény is primitív függvény. Általánosan fogalmazva egy függvény pontosan akkor primitív függvénye a sin x függvénynek, ha felírható -cos x +C alakban, ahol C valós szám.

Bebizonyítható, hogy a határozott integrál a következőképpen számolható:
Newton–Leibniz-formula: , ahol az F függvény az f függvény egyik primitív függvénye, a pedig egy új jelölés az F(b)-F(a) kifejezésre.

A szinuszfüggvényt felrajzolva, a kapott eredmény előjele nem meglepő, hiszen a kérdéses intervallumon a függvényérték végig negatív.

Határozatlan integrál

A primitív függvények halmazát határozatlan integrálnak vagy antideriváltnak nevezzük. Ezt a halmazt vagy gyakrabban annak egy általános elemét vagy röviden jelöli.

Nevezetes függvények primitív függvényei

, ahol C tetszőleges valós szám.

, ahol C tetszőleges valós szám.

, ahol C tetszőleges valós szám.

, ahol C tetszőleges valós szám.

, ahol C tetszőleges valós szám.

, ahol C tetszőleges valós szám.

Integrálási szabályok

Az integrálási szabályok levezethetőek a deriválási szabályokból. Példák (f,g függvények, c valós konstans) :

, ahol és valós szám és .

, ahol .

, ahol C tetszőleges valós szám és .

, ahol C tetszőleges valós szám.

A Riemann-integrálhatóság Lebesgue-féle kritériuma

Egy intervallumon értelmezett függvény pontosan akkor Riemann-integrálható, ha korlátos és majdnem minden pontjában folytonos (tehát a szakadási pontok halmaza a Lebesgue-mérték szerint nullmértékű).

Egyéb integrálok

Bár a Riemann-integrál a leggyakrabban használt integrál, van sok egyéb integrálfogalom:

Külső hivatkozások

Források

  • Durszt E. (1995): Bevezetés a mérték- és integrálelméletbe. JATEPress, Szeged.
  • Imreh Cs. (1997): A Riemann-integrál egy általánosításáról. Polygon, VII. 2. 15-34. o.
  • Leindler L. (1995): A funkcionálanalízis elemei. JATEPress, Szeged.
  • Medvegyev P. (2004): Szochasztikus analízis. Typotex Kiadó, Budapest.
  • Mikolás M. (1978): Valós függvénytan és ortogonális sorok. Tankönyvkiadó, Budapest.