Potenciális energia

A Wikipédiából, a szabad enciklopédiából

Potenciális energia azaz legújabb nevén magassági energia (vagy helyzeti energia) a fizikában az energia egyik formája. Az az energia, amellyel egy test rendelkezik potenciálos erőtérben. A potenciális energia nagyságát mindig valamilyen nulla energiaszinthez viszonyítják. Mivel az energia munkavégző képesség, a potenciális energiát is Joule-ban mérik (J).

Potenciálos vagy konzervatív erőtérnek olyan erőteret nevezünk, ahol egy pontból egy másik pontba elmozdítva egy testet, mindig ugyanakkora munkát kell végeznünk, bármilyen útvonalat is használunk. Ilyen erőterek például a gravitációs erőtér, elektrosztatikus erőtér, rugalmas alakváltozás stb.

Gravitációs energia[szerkesztés | forrásszöveg szerkesztése]

Egy test gravitációs potenciális energiája U_g egyenlő a munkával amelyet az állandó gravitációs erő F=mg végez amikor a testet egy adott helyzetből egy másikba mozgatja h magasságba, és kifejezhető a

U_g = m g h \,

ahol

m a test tömege
g a nehézségi gyorsulás
h a magasság

Ez az egyenlet jó közelítéssel használható a Föld felszínén, ahol kis magasságok esetén a nehézségi gyorsulás állandónak vehető. Űrhajók esetén vagy csillagászati számításoknál a nehézségi gyorsulás g nem állandó, hanem a távolság négyzetével fordítottan arányos, így a képletünket integrál formájában kell felírni. Egyenletes sűrűségű gömb esetén (közelítőleg ilyen egy bolygó is) a felszíntől h magasságra számítva az integrál a következő formát kapja:

U_g = \int_{h_0}^{h + h_0} {G m_1 m_2 \over r^2} dr

ahol

h_0 a gömb sugara,
m_2 a gömb tömege és
G a gravitációs állandó.

Ha a test gömbszimmetrikus, mint például a Föld, akkor az erőtér egyenlő azzal, mintha egy ugyanolyan tömegű tömegponttal helyettesítenénk. A tömegközéppont bevezetésével ez az elv általánosítható bármilyen alakra és sűrűségre. A fentiek figyelembevételével egy test gravitációs potenciális energiája

U_g = \frac{-G m_1 m_2}{r}

ahol

U_g egy test potenciális energiája, ha a potenciális energia 0 szintjét az r=∞ távolságban definiáljuk,
m_1 és m_2 a két test tömege,
r a távolság a két test tömegközéppontja között.

Meg kell jegyezni, hogy a potenciális energia mindkét testre azonos, így a teljes rendszer potenciális energiája 2×U_g. Megjegyezzük ugyancsak, hogy a potenciális energia 0 értékét az r=∝; távolságra szokás definiálni. Ez bizonyos esetekben matematikailag könnyebb kezelhetőséget tesz lehetővé. A következménye azonban az, hogy az ilyen módon elírt potenciális energia mindig negatív értéket vesz fel. Természetesen ez nem jelenti azt, hogy két pont potenciális energia különbsége is negatív volna.

Rugalmas potenciális energia[szerkesztés | forrásszöveg szerkesztése]

Egy rugalmas húrban vagy rugóban tárolt rugalmas potenciális energia, ha rugómerevsége k, x megnyúlás esetén a Hooke-törvény integrálásából számítható:

U_r = \int {k x}\, dx = \frac {1} {2} k x^2

Ezt az összefüggést gyakran használják mechanikai egyensúly számításához.

Elektrosztatikus potenciális energia[szerkesztés | forrásszöveg szerkesztése]

Egy elektromosan töltött test elektrosztatikus potenciális energiája az a munka, melyet ahhoz kellene végeznünk, hogy a testet egy végtelen távoli pontból jelenlegi helyzetébe mozdítsunk, akkor, ha nincs jelen más (nem elektrosztatikus) erő a művelet folyamán. Ez az energia zérótól különbözik, ha egy másik elektromosan töltött test van a közelben.

A legegyszerűbb esetben két pontszerű testünk van A1 és A2 q1 és q2 elektromos töltéssel. A W munka, mely szükséges ahhoz hogy A1-et a végtelenből A2-től d távolságra mozgassuk a következőképpen számítható:

W=\frac {kq_1q_2} d

ahol k a Coulomb-állandó, vagyis \frac 1 {4\pi\epsilon_0}.

Ezt az egyenletet úgy kapjuk, hogy a két test között ható Coulomb-erőt végtelentől d távolságig integráljuk.