Fájl:Simple harmonic oscillator.gif

A Wikipédiából, a szabad enciklopédiából
Jump to navigation Jump to search
Simple_harmonic_oscillator.gif(116 × 359 képpont, fájlméret: 52 KB, MIME-típus: image/gif, ismétlődik, 15 képkocka, 1,1 s)


Leírás

Illustration of a en:Simple harmonic oscillator

Dátum
Forrás self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code).
Szerző Oleg Alexandrov
Más változatok

Damped spring.gifDamped spring.gif Damped version

GIF kód
Matlab Logo.png
Ez GIF számítógépes grafika MATLAB segítségével készült.

Matlab

function main()

% colors
   red      = [0.867    0.06    0.14];
   blue     = [0        129     205]/256;
   green    = [0        200     70]/256;
   black    = [0        0       0];
   white    = [1        1       1]*0.99;
   cardinal = [196      30      58]/256;
   cerulean = [0        123     167]/256;
   denim    = [21       96      189]/256;
   cobalt   = [0        71      171]/256;
   pblue    = [0        49      83]/256;
   teracotta= [226      114     91]/256;
   tene     = [205      87      0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color   = tene;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;

   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 8;

   A = 0.2; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)

   %  Each of the small lines has length l
   l = 0.05;

   N = 15;  % times per oscillation 
   No = 1; % number of oscillations
   for i = 1:N*No

      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;

   
      t = 2*pi*(i-1)/(N-0)+pi/2; % current time
      H= A*sin(t) +  B;      % position of the mass

      % plot the spring from Start to End
      Start = [0, 0]; End = [0, H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 

      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
            
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);

      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);

          
          % the bounding box
          Sx = -0.4*ww;  Sy = B-A-ms+0.05;
          Lx = 0.4*ww+l; Ly=l;
          axis([Sx, Lx, Sy, Ly]);
          plot(Sx, Sy, '*', 'color', white); % a hack to avoid a saveas to eps bug
          
      saveas(gcf, sprintf('Spring_frame%d.eps', 1000+i), 'psc2') %save the current frame
      disp(sprintf('Spring_frame%d', 1000+i)); %show the frame number we are at
      
      pause(0.1);
      
   end

% The following command was used to create the animated figure.    
% convert -antialias -loop 10000  -delay 7 -compress LZW Spring_frame10* Simple_harmonic_oscillator.gif
   

function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B

   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
   
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
   
   X=linspace(0, 1, Npoints);

   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
   
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 

% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
   
% shift by b to the right and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 

   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end

%  shift the spring to start from 0
   X = X-X(1);
   
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];

   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end

function plot_wall(S, E, l, lw, wall_color)

%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
   
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

   V=l*(0:0.1:1);

   for i=0:(no-1)
      plot(S+ i*spacing + V, V, 'color', wall_color)
   end

Public domain Én, a szerző, ezt a művemet ezennel közkinccsé nyilvánítom. Ez a világ minden részén érvényes.
Egyes országokban ez jogilag nem lehetséges. Ha így van, akkor:
Jogot adok bárkinek, hogy bármilyen célból, feltétel nélkül használhassa ezt a fájlt, kivéve a törvény által kötelezően előírt feltételeket.

Képjegyzetek Ehhez a képhez képjegyzetek tartoznak: Képjegyzetek megtekintése a Commonson

Fájltörténet

Kattints egy időpontra, hogy a fájl akkori állapotát láthasd.

Dátum/időBélyegképFelbontásFeltöltőMegjegyzés
aktuális2007. június 24., 05:12Bélyegkép a 2007. június 24., 05:12-kori változatról116 × 359 (52 KB)Oleg Alexandrovtweak
2007. június 24., 05:10Bélyegkép a 2007. június 24., 05:10-kori változatról157 × 362 (51 KB)Oleg AlexandrovReverted to earlier revision
2007. június 24., 05:10Bélyegkép a 2007. június 24., 05:10-kori változatról116 × 359 (7 KB)Oleg Alexandrovtweak
2007. június 24., 04:42Bélyegkép a 2007. június 24., 04:42-kori változatról157 × 362 (51 KB)Oleg Alexandrov{{Information |Description= |Source=self-made with en:Matlab. Converted to gif animation with the en:ImageMagik convert tool. |Date= ~~~~~ |Author= Oleg Alexandrov }} {{PD-self}}

Az alábbi lapok hivatkoznak erre a fájlra:

Globális fájlhasználat

A következő wikik használják ezt a fájlt:

A fájl globális használatának megtekintése