Fájl:Tesseract2.png

Az oldal más nyelven nem érhető el.
A Wikipédiából, a szabad enciklopédiából

Tesseract2.png(212 × 263 képpont, fájlméret: 55 KB, MIME-típus: image/png)

Ez a kép elérhető vektorgrafikus (SVG) változatban is. Azt használd e helyett a raszterkép helyett.

File:Tesseract2.png → File:Tesseract2.svg

A vektorgrafikáról a Help:SVG oldalon találsz információkat.

Más nyelveken
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
Az új SVG kép

Összefoglaló

Image of a three-dimensional net of a tesseract, created by Dmn with Paint Shop Pro.

The net of a tesseract is the unfolding of a tesseract into 3-D space. Let the dimension from left to right be labeled x, the dimension from bottom to top be labeled z, and the dimension from front to back be labeled y. Let coordinates by (x, y, z). Let the top cube have coordinates (0,0,1), the cube below it have coordinates (0,0,0), the cube in front of it have coordinates (0,−1,0), the cube behind it have coordinates (0,1,0), the cube to the left (−1,0,0), the one to the right (1,0,0). Let the cube below the central one have coordinates (0,0,−1) and the one at the bottom (0,0,−2).

The central cube (0,0,0) is seen to be connected to six other cubes, but when folded in 4-D every cube connects to six other cubes. The frontal cube (0,−1,0) connects in the −Y direction to (0,0,−2), in the +Y direction to (0,0,0), in the +X direction to (1,0,0), in the −X direction to (−1,0,0), in the +Z direction to (0,0,1), in the −Z direction to (0,0,−1).

There are twelve different ways in which the tesseract can be rotated (in 4-D) by 90 degrees in such a way that four of the cubes exchange positions cyclically while the remaining four cubes stay in place but rotate (in 3-D). For example, one 4-D rotation causes the following four-cube exchange: (0,0,1)→(0,0,0)→(0,0,−1)→(0,0,−2)→(0,0,1). Meanwhile, the same rotation causes cube (0,1,0) to rotate 90 degrees around the +X axis, the (0,−1,0) cube to rotate 90 degrees around the −X axis, the (1,0,0) cube to rotate 90 degrees in the −Y direction and the (−1,0,0) cube to rotate 90 degrees in the +Y direction.

The twelve 4-D rotations are:
1: (0,0,1)→(0,0,0)→(0,0,−1)→(0,0,−2)→(0,0,1),
2: (0,0,1)←(0,0,0)←(0,0,−1)←(0,0,−2)←(0,0,1),
3: (1,0,0)→(0,1,0)→(−1,0,0)→(0,−1,0)→(1,0,0),
4: (1,0,0)←(0,1,0)←(−1,0,0)←(0,−1,0)←(1,0,0),
5: (−1,0,0)→(0,0,0)→(1,0,0)→(0,0,−2)→(−1,0,0),
6: (−1,0,0)←(0,0,0)←(1,0,0)←(0,0,−2)←(−1,0,0),
7: (0,−1,0)→(0,0,0)→(0,1,0)→(0,0,−2)→(0,−1,0),
8: (0,−1,0)←(0,0,0)←(0,1,0)←(0,0,−2)←(0,−1,0),
9: (0,0,1)→(1,0,0)→(0,0,−1)→(−1,0,0)→(0,0,1),
10: (0,0,1)←(1,0,0)←(0,0,−1)←(−1,0,0)←(0,0,1),
11: (0,0,1)→(0,1,0)→(0,0,−1)→(0,−1,0)→(0,0,1),
12: (0,0,1)←(0,1,0)←(0,0,−1)←(0,−1,0)←(0,0,1).

Each 4-D rotation has a "dual" which is perpendicular to the 3-D rotation of the stationary cubes. There are six pairs of dual (4-D) rotations:

  • 1 ↔ 4,
  • 2 ↔ 3,
  • 5 ↔ 12,
  • 6 ↔ 11,
  • 7 ↔ 9,
  • 8 ↔ 10.

The dual of a 4-D rotation implies, by means of the right-hand rule, how the stationary cubes are supposed to rotate in 3-D.

Since there are eight cubes and each cube connects to six other cubes, then each cube has a pair of cubes to which it does not connect: (1) itself, and (2) its opposite. Thus there are four pairs of opposite cubes:
1: (0,0,1) ↔ (0,0,−1),
2: (0,0,0) ↔ (0,0,−2),
3: (−1,0,0) ↔ (1,0,0),
4: (0,−1,0) ↔ (0,1,0).

Each pair of opposite cubes aligns itself along opposite sides of one of four orthogonal axis of 4-D space. Therefore it is possible to establish a one-to-one onto mapping f between the unfolded positions of the cubes in 3-D and the canonical coordinates of their folded positions in 4-D, viz.

The canonical 4-D coordinates have been given labels corresponding to basis quaternions (and their negatives). Using these labels, the 4-D rotations can be expressed more simply as
1: K → 1 → −K → −1 → K,
2: K → −1 → −K → L → K,
3: I → J → −I → −J → I,
4: I → −J → −I → J → I,
5: −I → 1 → I → −1 → −I,
6: −I → −1 → I → 1 → −I,
7: −J → 1 → J → −1 → −J,
8: −J → −1 → J → 1 → −J,
9: K → I → −K → −I → K,
10: K → −I → −K → I → K,
11: K → J → −K → −J → K,
12: K → −J → −K → J → K.

All of these rotations follow a pattern AB→−A→−BA, so that each one can be abbreviated as an ordered pair (A,B). Then, each rotation can be abbreviated furthest as the product of the ordered pair of quaternions, which yields an imaginary quaternion:
1: (K,1) = K
2: (K,−1) = −K
3: (I,J) = K
4: (I,−J) = −K
5: (−I,1) = −I
6: (−I,−1) = I
7: (−J,1) = −J
8: (−J,−1) = J
9: (K,I) = J
10: (K,−I) = −J
11: (K,J) = −I
12: (K,−J) = I

The pairs of dual quaternions are then seen to have the following properties: the products of their single-quaternion abbreviations are always unity:

  • 1 ↔ 4 : K (− K) = 1,
  • 2 ↔ 3 : (−K) K = 1,
  • 5 ↔ 12 : (− I) I = 1,
  • 6 ↔ 11 : I (−I) = 1,
  • 7 ↔ 9 : (−J) J = 1,
  • 8 ↔ 10 : J (−J) = 1.

Each of the twelve rotations has a pair of candidate duals, but one of them is the reversal of the rotation, i.e. given rotation (A,B), its reverse is (A, −B), so it is disqualified as the dual of (A,B), leaving only one possible dual.

Licenc

Ez egy kétdimenziós, közkincs mű hű fényképe. Maga a mű a következő okból számít közkincsnek:
Public domain

Ez a mű közkincs abban az országban, ahol elkészítették, és minden olyan további államban, ahol a szerzői jogi védelmi idő a szerző élete plusz 70 év vagy kevesebb.


You must also include a United States public domain tag to indicate why this work is in the public domain in the United States. Note that a few countries have copyright terms longer than 70 years: Mexico has 100 years, Jamaica has 95 years, Colombia has 80 years, and Guatemala and Samoa have 75 years. This image may not be in the public domain in these countries, which moreover do not implement the rule of the shorter term. Honduras has a general copyright term of 75 years, but it does implement the rule of the shorter term. Copyright may extend on works created by French who died for France in World War II (more information), Russians who served in the Eastern Front of World War II (known as the Great Patriotic War in Russia) and posthumously rehabilitated victims of Soviet repressions (more information).

A Wikimédia Alapítvány hivatalos álláspontja szerint „kétdimenziós közkincs művek hű reprodukciói közkincsnek számítanak”.
Ez a fénykép ezért szintén közkincsnek számít. Más jogrendszerekben ennek a műnek az újrafelhasználása korlátozott lehet; lásd a Commons:Reuse of PD-Art photographs lapot a részletekért.
{{PD-Art}} template without license parameter: please specify why the underlying work is public domain in both the source country and the United States
(Usage: {{PD-Art|1=|deathyear=''year of author's death''|country=''source country''}}, where parameter 1= can be PD-old-auto, PD-old-auto-expired, PD-old-auto-1996, PD-old-100 or similar. See Commons:Multi-license copyright tags for more information.)

Fájltörténet

Kattints egy időpontra, hogy a fájl akkori állapotát láthasd.

Dátum/időBélyegképFelbontásFeltöltőMegjegyzés
aktuális2006. január 7., 11:14Bélyegkép a 2006. január 7., 11:14-kori változatról212 × 263 (55 KB)Anarkman~commonswikiImage of a three-dimensional net of a tesseract, created by Dmn with Paint Shop Pro. The net of a tesseract is the unfolding of a tesseract into 3-D space. Let the dimension from left to right be labeled ''x'', the dimension from bottom to top be labele

Az alábbi lap használja ezt a fájlt:

Globális fájlhasználat

A következő wikik használják ezt a fájlt: