Nyitott mondat

A Wikipédiából, a szabad enciklopédiából

Az 1960-as évek új matematikájának szaknyelvében jelent meg, a nyitott mondat egy olyan mondat, melyben a változók helyére az alaphalmazból számokat helyettesítve a kifejezés kiértékelése igaz eredményt ad.

Az elemi matematikaoktatásban nem terjedt el, továbbra is az egyenlet, egyenlőtlenség független változókkal stb. a használatos kifejezésmód, habár a matematikai logikában és az analitikus filozófiában abszolúte köznapinak számít a „nyitott mondat” (valójában inkább „nyílt mondat”) és „zárt mondat” megnevezés (valójában bizonyos reformok részeként e tudományágak hatására próbálták elterjeszteni az elemi matematikaoktatásban; ld. a formalizmus és az Új Matematika szócikkeket).

A matematikai tételek predikatív szempontból való osztályzása, ennek részeként a nyílt-zárt megkülönböztetés felfedezése és logikai alapparadigmává tétele végső soron Gottlob Frege műve, bár ő nem a „zárt” és „nyílt”, hanem a „határozott” és „határozatlan” (illetve, „kiegészítésre szoruló”, „kitöltetlen” stb.) kifejezéseket használta. [1] [2]

A nyitott mondat kifejezést főleg általános iskolai (alsó tagozatos) matematika tankönyvek használják érthetőbb, világosabb hangzása miatt. Ott nem egyszer valóban szöveges mondatokat jelöl ez a megnevezés.

Az összes számértéket, melyre a nyitott mondat igaz értéket ad, megoldásnak nevezzük. Ha az alaphalmaz minden értéke megoldás, akkor azonosságról beszélünk.

Példák nyitott mondatra:

  1. 3x - 9 = 21, x egyetlen megoldása az egész számok halmazán a 10.
  2. 4x + 3 > 9, a valós számok halmazán minden 1,5-nél nagyobb valós szám megoldás.
  3. x + y = 0, a valós számpárok halmazán azok a párok adják a megoldást, melyek egymás additív inverzei.
  4. 3x + 9 = 3(x + 3), azonosság, mert az alaphalmaz minden értéke megoldás.
  5. 2x - 7 = 2(x - 4), nincs megoldása egyetlen számkörben sem.

A 2. példa egyenlőtlenség, a többi pedig egyenlet.

A nyitott mondathoz minden esetben (gyakran csak közvetett módon) tartozik egy alaphalmaz, ami kijelöli azt a számkört, amiben a megoldásokat keressük. Lehet alaphalmaz a valós számok halmaza, vagy akár kereshetjük a megoldásokat az egészek körében. A fenti 2. példában 1,5 megoldás, ha alaphalmaznak a valós számokat választjuk, de nem megoldás, ha ugyanezt az egészek körében keressük. Az utóbbi esetben csak az 1,5-nél nagyobb egész számok a megoldások, tehát: 2, 3, 4, és így tovább. Másrészről pedig az alaphalmaznak a komplex számokat választva ez a feladat értelmetlen (persze más esetben lehet értelmes). Természetesen az azonosság is csak az alaphalmaz értékeire szorítkozhat.

Az alaphalmaz használható a nyitott mondat megoldásainak felírásánál, amihez logikai jeleket és kvantorokat is használhatunk. Például a fenti második példa megoldását a következő módon formalizálhatjuk:

Minden x-re, 4x + 3 > 9 akkor, és csak akkor ha x > 1,5.

Itt a minden x-re fordulat közvetetten azt sugallja, hogy az alaphalmaz minden szóba jövő matematikai objektumot jelent, azaz a lehető legbővebb számhalmazt.

A fentiek folyományaként előállnak olyan esetek is, amikor a változók egyáltalán nem számokat jelentenek, mint például a függvényegyenleteknél. Tekintsük a következő kifejezést:

f*f = f,

ami x minden értékére a következőt jelenti: f(x)*f(x) = f(x). Amennyiben az alaphalmaznak az összes valós függvényt tekintjük, akkor f-re kapható megoldás olyan függvényeket jelent, amik értéke csak 0, vagy csak 1 lehet. Amennyiben az alaphalmaz a folytonos függvények halmaza, akkor két konstans függvény lehet megoldás, az azonosan 0 és az azonosan 1 függvény.

Források[szerkesztés | forrásszöveg szerkesztése]

  1. Frege, Gottlob: Fogalomírás. In: Logika, szemantika, matematika, Gondolat, Bp., 1980.; 9§ (A függvény); 43. o., ld. még Előszó, 21. o.
  2. Frege, Gottlob: Függvény és fogalom. In: Logika, szemantika, matematika, Gondolat, Bp., 1980.; 109-110. o.