Logaritmikus derivált

A Wikipédiából, a szabad enciklopédiából

A logaritmikus derivált egy függvény logaritmusának deriváltját[1] jelenti, definició szerint  \frac{f'}{f} \!

ahol f ′ az f függvény deriváltja

Ha f a valós x változó f(x) függvénye, és valós, szigorúan pozitív értékeket vesz fel, akkor egyenlő az ln(f) deriváltjával, vagy az f természetes logaritmusának a deriváltjával. Ez a láncszabályból következik.

Alapvető tulajdonságok[szerkesztés | forrásszöveg szerkesztése]

Lényeges tulajdonsága, hogy nem függ f értékeinek mértékegységétől.

Közgazdaságtanban ezt rugalmasságnak szokás nevezni.

A valós logaritmus több tulajdonsága is vonatkozik a logaritmikus deriváltra, még abban az esetben is, amikor a függvény értékei nem pozitív valós számok.

Például, egy szorzat logaritmusa, az egyes tagok logaritmusának az összege, kapjuk:

 (\log uv)' = (\log u + \log v)' = (\log u)' + (\log v)' .\!


Az általánosított Leibniz-törvényt is alkalmazhatjuk egy szorzat deriváltjára:

 \frac{(uv)'}{uv} = \frac{u'v + uv'}{uv} = \frac{u'}{u} + \frac{v'}{v} .\!

Így bármely függvényre igaz, hogy egy szorzat logaritmikus deriváltja az egyes tagok logaritmikus deriváltjának az összege (ha azok definiáltak). Hasonlóan (valójában ez az előbbiekből következik), egy függvény reciprokának a logaritmikus deriváltja a függvény logaritmikus deriváltjának a negáltja:

 \frac{(1/u)'}{1/u} = \frac{-u'/u^{2}}{1/u} = -\frac{u'}{u} ,\!

mivel egy pozitív valós szám reciprokának a logaritmusa, a szám logaritmusának a negáltja. Még általánosabban, egy hányados logaritmikus deriváltja, az osztandó és az osztó logaritmikus deriváltjainak a különbsége:

 \frac{(u/v)'}{u/v} = \frac{(u'v - uv')/v^{2}}{u/v} = \frac{u'}{u} - \frac{v'}{v} ,\!

Egy másik irányban általánosítva, egy hatvány logaritmusa (valós, állandó kitevővel) az alap logaritmikus deriváltjának és az exponens szorzata:  \frac{(u^{k})'}{u^{k}} = \frac {ku^{k-1}u'}{u^{k}} = k \frac{u'}{u} ,\! Összefoglalva, mind a deriváltnak, mind a logaritmusnak van szorzatszabálya, reciprokszabálya, hányadosszabálya, és kitevőszabálya; mindegyik szabály kapcsolódik a logaritmikus deriválthoz.

Derivált számítás logaritmikus deriválttal[szerkesztés | forrásszöveg szerkesztése]

A logaritmikus derivált alkalmazása leegyszerűsítheti a derivált számítást, ahol szükség van a szorzatszabályra. A folyamat a következő: tegyük fel, hogy ƒ(x) = u(x)v(x), és szeretnénk kiszámolni ƒ'(x)-et. Ahelyett, hogy közvetlenül számolnánk, a logaritmikus deriválttal számolunk:

\frac{f'}{f} = \frac{u'}{u} + \frac{v'}{v}.

ƒ-fel végigszorozva, lesz ƒ':

f' = f\left(\frac{u'}{u} + \frac{v'}{v}\right).

Ez a technika akkor nagyon hasznos, a ƒ sok tényező szorzata. Ez a technika lehetővé teszi ƒ' kiszámítását, minden egyes tényező logaritmikus deriváltjának összegezésével, és megszorozva ƒ-fel.

Példák[szerkesztés | forrásszöveg szerkesztése]

Irodalom[szerkesztés | forrásszöveg szerkesztése]

  • Simonovits András: Válogatott fejezetek a matematika történetéből. (hely nélkül): Typotex Kiadó. 2009. 109–113. o. ISBN 9789632790268  

Kapcsolódó szócikkek[szerkesztés | forrásszöveg szerkesztése]

Források[szerkesztés | forrásszöveg szerkesztése]