Hiányos számok

A Wikipédiából, a szabad enciklopédiából

A számelméletben hiányos számnak nevezünk minden olyan egészt, amelyek nagyobbak osztóik összegénél (önmagukat nem számítva). (Deficient numbers: sigma(n) < 2n.) [1] Alternatív definíció: azon számok, amelyekre σ(n) < 2n, ahol σ(n) az n osztóinak összege (ezúttal önmagát is beleértve).

A szám és az osztók összegének különbsége [más szóval 2n ‒ σ(n)] a hiányosság mértéke. Azon számokat, amelyeknél ez a mérték 1, alig hiányos számoknak nevezzük. A hiányos számokat elsőként Nikomakhosz görög matematikus definiálta 100 körül, Introductio Arithmetica („Bevezetés az aritmetikába”) című művében. Végtelen sok hiányos szám létezik, páros és páratlan egyaránt; többek között minden prím és prímhatvány az. Az első pár ilyen szám:

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37,…

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]

Lásd még[szerkesztés | forrásszöveg szerkesztése]