Hőmérsékleti sugárzás

A Wikipédiából, a szabad enciklopédiából
Forró fém hősugárzása

Hőmérsékleti sugárzásnak nevezzük az anyag hőmozgása miatt kibocsátott elektromágneses sugárzást. A testek minden T > 0 K hőmérsékleten elektromágneses hullámokat bocsátanak ki, a környezet hőmérsékletétől függetlenül. A sugárzás kibocsátásakor (emisszó) lényegében a test belső energiája átalakul elektromágneses energiává, a sugárzás elnyelésekor (abszorpció) pedig az elektromágneses energia alakul belső energiává.

A hőmérsékleti sugárzás emissziójával és abszorpciójával valósul meg a hőátadás egy lehetséges formája, a hősugárzás. Bruttó hőátadás akkor történik, amikor egy melegebb test által kibocsátott elektromágneses sugárzást egy hidegebb test elnyel.

A hőmérsékleti sugárzás frekvenciafüggése különböző hullámhosszakon. Az ábrán jól látható, hogy a hullámhossz csúcsának helye a Wien-féle eltolódási törvény szerint változik, és a teljes kisugárzott energia jelentősen változik a hőmérséklet növekedésével (Stefan–Boltzmann-törvény). A látható fény 380 és 750 nm között található

A hőmérsékleti sugárzás néhány kvalitatív tulajdonsága[szerkesztés | forrásszöveg szerkesztése]

  • Az energiakibocsátás széles hullámhossztartományban történik (0< λ< \infty)
  • A sugárzás intenzitása és spektrális (hullámhossz vagy frekvencia szerinti) energiaeloszlása egy adott testnél csak a hőmérséklettől függ
  • A kibocsátás (emisszió) és az elnyelés (abszorpció) folyamata egymástól független. A testek akkor is sugároznak, ha a környezet miatt nem nyelnek el energiát.

Termodinamikai egyensúly esetén az emittált és az abszorbeált energia megegyezik, ellenkező esetben a sugárzó test melegszik vagy hűl a környezetéhez képest. A két folyamat függetlensége azt jelenti, hogy a sugárzó test nem azt az energiát bocsátja ki, amit elnyelt.

A hőmérsékleti sugárzás klasszikus törvényei[szerkesztés | forrásszöveg szerkesztése]

Kirchhoff sugárzási törvénye[szerkesztés | forrásszöveg szerkesztése]

Gustav Robert Kirchhoff (német fizikus (1824 – 1887); sugárzási törvénye szerint (1859) bármely testnél egy adott hullámhosszon és hőmérsékleten a spektrális emisszióképesség és az abszorpcióképesség hányadosa állandó.

A törvény következményei:

  • Mivel bármely test spektrális emisszióképessége felírható abszorpcióképességének és az abszolút fekete test spektrális emisszióképességének a szorzataként, ezért megállapítható, hogy egy adott hullámhosszon és hőmérsékleten a fekete test emisszióképessége a legnagyobb.

Ebből az is következik, hogy az összemisszió-képessége is az abszolút fekete testnek a legnagyobb, vagyis egy adott hőmérsékleten a fekete test sugároz a legjobban.

  • Ha egy test adott hullámhosszon és hőmérsékleten sugároz, akkor ezen a hullámhosszon és hőmérsékleten abszorbeál is. Fordítva ez nem teljesül; ha egy test adott hullámhosszon és hőmérsékleten sugarakat nyel el, akkor még nem biztos, hogy azon a hőmérsékleten ki is bocsátja azokat.

Stefan–Boltzmann-törvény[szerkesztés | forrásszöveg szerkesztése]

A Stefan–Boltzmann-törvény (Josef Stefan, osztrák fizikus (1835–1893), Ludwig Boltzmann (1844–1906) osztrák fizikus és filozófus) szerint az abszolút fekete test összemisszió-képessége (a fluxussűrűség) egyenesen arányos a termodinamikai (abszolút) hőmérséklet negyedik hatványával:

 j^{\star} = \sigma T^{4},

ahol

\sigma a Stefan–Boltzmann-állandó.

Wien-féle eltolódási törvény (Wien I. törvénye)[szerkesztés | forrásszöveg szerkesztése]

Wilhelm Wien (német fizikus, 1864 – 1928, Nobel–díj: 1911) az abszolút fekete test T hőmérsékletéhez tartozó spektrális emisszióképesség görbéjének maximumhelyére vonatkozóan állapított meg törvényt (1893). A törvény szerint az abszolút fekete test emisszióképességének hullámhossz szerinti maximumhelye (λmax) fordítva arányos a termodinamikai hőmérséklettel: \lambda_\max = \frac{b}{T}

ahol

T a fekete test abszolút hőmérséklete, b a Wien–féle eltolódási állandó

Az eltolódási törvény kvalitatív igazolása látható akkor, amikor egy izzó test (pl. izzó vasdarab) színét vizsgáljuk a hevítés során. Alacsony hőmérsékleten az izzó test vörös színű. A hőmérséklet emelkedésével a test színe világos vörös, sárgás fehéres, végül kellően magas hőmérsékleten kékes színűvé válik. A jelenség azzal magyarázható, hogy a spektrális emisszióképesség maximuma a növekvő hőmérséklettel a csökkenő hullámhossz felé, vagyis a vörös tartományból az ibolya felé tolódik. A csillagok színe és az ebből adódó elnevezés is (vörös óriás, fehér törpe) az eltolódási törvénnyel magyarázható.

Wien II. sugárzási törvénye[szerkesztés | forrásszöveg szerkesztése]

Kevésbé ismert Wien második törvénye, amely a maximális intenzitásérték hőmérsékletfüggését adja meg. Eszerint a maximális intenzitás értéke a hőmérséklet ötödik hatványával arányos, vagyis:

 I_{max}=K\ T^5

Rayleigh–Jeans-törvény[szerkesztés | forrásszöveg szerkesztése]

John Rayleigh, (John William Strutt III. Lord Rayleigh, angol fizikus (1842 – 1919); Nobel-díj: 1904) és James Jeans (angol fizikus és csillagász (1877 – 1946) 1900-ban a spektrális emisszióképességet leíró függvény analitikai alakjának elméleti úton történő levezetését a klasszikus fizika alapján kísérelte megoldani.

B_\nu(T) = \frac{2 \nu^2 k T}{c^2}.

A Rayleigh–Jeans törvény a megfigyeléseknek megfelel nagy hullámhosszokon (vagyis alacsony frekvenciákon), de rövidhullámokon erősen ellentmond a megfigyeléseknek. Ez az ellentmondásosság a képlet és a megfigyelések között általánosan ultraibolya katasztrófa néven ismert.[1][2]

A problémát nem lehetett megoldani a klasszikus fizika alapján.

Planck hipotézise és sugárzási törvénye[szerkesztés | forrásszöveg szerkesztése]

A hőmérsékleti sugárzás problémáját Max Planck (német fizikus (1858–1947), Nobel-díj: 1918) oldotta meg. Planck abból a feltevésből indult ki, hogy az oszcillátorokra növekvő frekvencia esetén nem juthat kT átlagos energia, hanem annál kisebb. Plancknak a hőmérsékleti sugárzás problémáját úgy sikerült megoldania, hogy a klasszikus fizikától merőben eltérő új hipotézissel élt: az oszcillátorok energiája nem folytonos, hanem

E  = h \cdot \nu

energia-kvantumokból tevődik össze (a h együtthatót Planck-állandónak nevezik). Ezt nevezik Planck-hipotézisnek, melyet Planck először 1900. december 14-én jelentett be a porosz akadémia ülésén. Ekkor merült fel először a sugárzás korpuszkuláris jellege, innen számítjuk a kvantumfizika kezdetét.

A Planck sugárzási törvény több formája használatos.

A frekvencia függvényében \nu, [3][4]

I(\nu,T) =\frac{ 2 h\nu^{3}}{c^2}\frac{1}{ e^{\frac{h\nu}{kT}}-1}.

Planck törvénye felírható a spektrális energia sűrűségfüggvényeként is. [3][5]

u(\nu,T)    =   {  4 \pi \over c }   I(\nu,T)  =   \frac{8\pi h\nu^3 }{c^3}~\frac{1}{e^{\frac{h\nu}{kT}}-1},

A hullámhossz függvényében:[3][4]

I'(\lambda,T) =\frac{2 hc^2}{\lambda^5}\frac{1}{ e^{\frac{hc}{\lambda kT}}-1}.

Planck törvényéből könnyen levezethető a Wien-féle eltolódási törvény és a klasszikus Stefan–Boltzmann-törvény.

Kis frekvenciáknál a Rayleigh–Jeans-formula adódik, magas frekvenciáknál és alacsony hőmérsékleten a Wien-féle sugárzási törvény.

A Planck-féle sugárzási formula ily módon az összes sugárzáselméleti összefüggést tartalmazza és így a sugárzáselmélet központi törvényévé vált.

Planck törvényének igazi jelentőségét mégsem ez adja, hanem a kimunkálásakor felvetett hipotézis újszerűsége, mely a kvantumfizika kezdetét jelentette.

Jegyzetek[szerkesztés | forrásszöveg szerkesztése]

  1. Astronomy: A Physical Perspective, Mark L. Kutner pp. 15
  2. Radiative Processes in Astrophysics, Rybicki and Lightman pp. 20–28
  3. ^ a b c Planck 1914, p. 6 and p. 168
  4. ^ a b (Rybicki & Lightman 1979, p. 22)
  5. Brehm, J.J. and Mullin, W.J., "Introduction to the Structure of Matter: A Course in Modern Physics," (Wiley, New York, 1989) ISBN 047160531X.

Források[szerkesztés | forrásszöveg szerkesztése]

  • Pintér Ferenc: Általános fizika, Atomhéjfizika. (hely nélkül): Dialóg Campus Kiadó. 2003. 347–366. o.  

További információk[szerkesztés | forrásszöveg szerkesztése]