Galilei-transzformáció

A Wikipédiából, a szabad enciklopédiából

A Galilei-transzformáció kapcsolatot létesít két inerciarendszer között, melyek X tengelyei egybeesnek, Y és Z tengelyeik párhuzamosak és egymáshoz képest egyenes vonalú egyenletes mozgást végeznek. A kölcsönös mozgás az X tengely mentén v sebességgel történik. A transzformációval kiszámíthatjuk egy K rendszerben lévő esemény idejét és helyét egy K’ rendszerben is. Tehát ha adva van az x, y, z, t, akkor a Galilei-transzformáció segítségével meghatározhatjuk x’, y’, z’, t’ értékeit is.

Akkor szoktuk használni, ha a fény terjedésének sebességét nem vesszük figyelembe. E transzformációt leginkább a klasszikus mechanikában látni, ahol az idő és a hosszúságok abszolút jellegeit vesszük figyelembe.

A Galilei-transzformációt a Lorentz-transzformációból úgy vezethetjük le, hogy a c -t (azaz a fény sebességét) végtelennek vesszük.

A Galilei-transzformáció egyenletei[szerkesztés | forrásszöveg szerkesztése]

x'=x-vt\,

y'=y \,
z'=z \,

t'=t \,

Külső hivatkozások[szerkesztés | forrásszöveg szerkesztése]

  • Albert Einstein - A speciális és általános relativitás elmélete, Gondolat kiadó, 1965