Bohr-féle atommodell

A Wikipédiából, a szabad enciklopédiából

A Bohr-féle atommodell Niels Bohr Nobel-díjas dán fizikus által 1913-ban közzétett modell az atom felépítéséről.

A vonalas színképek értelmezésére és az atomok stabilitásának magyarázatára a korábban Ernest Rutherford által kifejlesztett atommodell nem volt alkalmas. Bohr ezt az elképzelést a Planck-féle kvantumfeltétellel és az Einstein-féle fotonhipotézissel egészítette ki.[1][2]

A klasszikus fizikát alapfeltevésekkel, posztulátumokkal kiegészített modell elméletileg nem volt levezethető a klasszikus fizika alapján, de sikeresen magyarázta a Rydberg-formulát és a hidrogén színképét. Nem lehet vele értelmezni bonyolultabb atomok vonalas színképét, vagy akár kísérletileg megfigyelhető finomabb részleteket sem, erre csak az atom kvantumfizikai leírása alkalmas. A Bohr-modell azonban az atom felépítésének egy nagyon szemléletes leírása és az ott bevezetésre kerülő fogalmak (pl. pálya, stacionárius állapot) a kvantumfizikai modellben is használatosak.

A modell alapfeltevései[szerkesztés]

Az elektronok stacionárius körpályái az atommag körül a Bohr-féle atommodell szerint

A Rutherford-féle atommodellben a negatív töltésű elektronok a pozitívan töltött atommag körüli körpályán keringenek. A klasszikus fizika törvényei szerint a centripetális erőt a pozitív és negatív töltés közötti vonzó erő, a Coulomb-erő szolgáltatja. A Bohr-féle atommodell posztulátumai ezen túlmenően:[3]

I. Az elektronok csak bizonyos megengedett sugarú körpályákon keringhetnek. Ezeken a pályákon az elektronok nem sugároznak, energiájuk állandó, ezért a pályák állandósult, ún. stacionárius pályák.

II. A stacionárius állapotok között átmenetek jöhetnek létre. Ekkor az elektron egyik stacionárius pályáról egy másikra kerül, miközben a két pálya közötti energiakülönbségnek megfelelő energiájú fotont az atom kibocsátja, vagy elnyeli. Az atom által emittált, vagy abszorbeált foton frekvenciáját az energiafeltétel határozza meg:

.


III. A stacionárius pályák sugarát az elektron pályaperdületének (impulzusmomentumának) a kvantálási szabálya határozza meg. Eszerint az atommag körül sugarú pályán sebességgel keringő tömegű elektron impulzusmomentuma a legkisebb perdület egész számú többszöröse kell legyen:

,
ahol kvantumszám, a Planck-állandó (hatáskvantum), pedig a redukált Planck-állandó.

A III. posztulátumban szereplő n értéket főkvantumszámnak nevezzük.[4]

A hidrogén energiaszintjei[szerkesztés]

A Bohr-modell az atom energiaszintjeire jó eredményeket csak az egy elektronnal rendelkező rendszerek esetében ad, ilyenek a hidrogén vagy az ionizált hélium.[5]

A modell abból indul ki, hogy az tömegű, elemi töltésű elektront sugarú körpályán sebességgel mozgató centripetális erő egyenlő a számú proton és az egy elektron közötti Coulomb-erővel:

ahol a Coulomb-állandó, és , ahol a vákuum permittivitása.

A harmadik posztulátum szerint pedig az elektron mozgásához tartozó impulzusmomentum:

A két egyenletből kifejezhető az kvantumszámhoz tartozó sugár és sebesség:

.

Az az kvantumszámhoz tartozó legkisebb energiájú körpálya sugara, az ún. Bohr-sugár. Értéke: .

A nyugvónak tekinthető atommag körül keringő elektron teljes energiája az elektrosztatikus vonzáshoz tartozó potenciális energia és a mozgási (kinetikai) energia összege:

A sebesség fenti kifejezését behelyettesítve belátható, hogy a potenciális energia abszolút értéke kétszer annyi, mint a mozgási energia:

A teljes energia tehát negatív és fordítottan arányos a pálya sugarával:

A maghoz közelebbi pályákhoz tartozó energia negatívabb. Ha az elektron energiája nő, akkor távolodik a magtól. A pálya sugarát behelyettesítve, az kvantumszámhoz tartozó állapotban a teljes energia:

, ahol

Az elektronpályákhoz tartozó diszkrét energiaértékek tehát egy sorozatot alkotnak, és az elemek -tel arányosak.

A fizikai állandók értékeit behelyettesítve:

Ezek szerint a hidrogén legalacsonyabb energiaszintje −13,6 eV, a második −3,4 eV, a harmadik −1,5 eV és így tovább. Tehát, az alapállapotban lévő hidrogénatom ionizációs energiája 13,6 eV.

A Rydberg-formula származtatása a Bohr-modell alapján[szerkesztés]

Bohr-féle atommodell és a foton elnyelése és kibocsátása

A Johannes Rydberg svéd fizikus által 1888-ban megadott Rydberg-formula kísérleti megfigyelésekből származott. A formula a Bohr-modellből levezethető, és a Rydberg-állandóra is jó értéket ad.

A Bohr-modell szerint, ha az elektron egy magasabb energiaszintről egy alacsonyabbra kerül, az atom a két energiaszint közötti energiakülönbségnek megfelelő energiájú fotont bocsát ki. Az energiaszinteket leíró fenti összefüggés alapján a különbség:

ahol jelöli a magasabb energiaszintet, pedig az alacsonyabbat.

A fotonhipotézis alapján a foton energiája:

,

ahol a foton frekvenciája, és a fény sebessége és hullámhossza.

Tehát:

.

Miközben az elektron az kvantumszámú energiaszintről az szintre kerül az atom egy hullámszámú fotont bocsát ki:

.

Ez az ún. Rydberg-formula, amelyben az arányossági tényező a Rydberg-állandó: .

Kísérleti bizonyítása[szerkesztés]

A modell helytállóságának döntő bizonyítékává a Franck–Hertz-kísérlet vált. Kidolgozóit, James Franckot és Gustav Ludwig Hertzet 1925-ben fizikai Nobel-díjjal jutalmazták.

A Bohr-Sommerfeld modell[szerkesztés]

Bohr modelljét két év múlva, a színképvonalak finomszerkezetét figyelembe véve pontosította Arnold Sommerfeld. A pontosított modellben az elektronok immár ellipszis alakú pályákon is mozoghatnak.

Források[szerkesztés]

  1. Niels Bohr (1913). „On the Constitution of Atoms and Molecules, Part I”. Philosophical Magazine 26 (151), 1–24. o. DOI:10.1080/14786441308634955.  
  2. Niels Bohr (1913). „On the Constitution of Atoms and Molecules, Part II Systems Containing Only a Single Nucleus”. Philosophical Magazine 26 (153), 476–502. o. DOI:10.1080/14786441308634993.  
  3. Erostyák J., Kürti J., Raics P., Sükösd Cs.: Fizika III. Fénytan. Relativitáselmélet. Atomhéjfizika. Atommagfizika. Részecskefizika. Nemzeti Tankönyvkiadó, 2006 ISBN 963 19 5806 X
  4. Sulinet: ATOMMODELLEK, KVANTUMSZÁMOK, PAULI-FÉLE TILALMI ELV. [2019. május 29-i dátummal az eredetiből archiválva]. (Hozzáférés: 2019. május 29.)
  5. Kovács E., Paripás B.: Fizika II. 2011 Digitális Tankönyvtár

További információk[szerkesztés]